A Semiparametric Quantile Panel Data Model with An Application to Estimating the Growth Effect of FDI∗†‡

Zongwu Caia,b, Linna Chena, and Ying Fangb,†

aDepartment of Economics, University of Kansas, Lawrence, KS 66045, USA
bWang Yanan Institute for Studies in Economics, MOE Key Laboratory of Econometrics, and Fujian Key Laboratory of Statistical Science, Xiamen University, Xiamen, Fujian 361005, China

March 10, 2016

Abstract

In this paper, we estimate the impact of FDI on economic growth in host countries by proposing a new semiparametric quantile panel data model with correlated random effects for fixed T, in which some of the coefficients are allowed to depend on some smooth economic variables while other coefficients remain constant. A three-stage estimation procedure based on quasi-maximum (local) likelihood estimation (QMLE) is proposed to estimate both constant and functional coefficients and their asymptotic properties are investigated. We show that the estimator of constant coefficients is \sqrt{N} consistent and the estimator of varying coefficients converges in a nonparametric rate. A simple and easily implemented procedure for making inferences such as constructing confidence intervals for parameters and testing the hypothesis of a varying-coefficient is proposed. A Monte Carlo simulation study is conducted to examine the finite sample performance of the proposed estimators. Finally, using the cross-country data from 1970 to 1999, we find a strong empirical evidence of the existence of the absorptive capacity hypothesis. Moreover, another new finding is that FDI has a much stronger growth effects for countries with fast economic growth than for those with slow economic growth.

Keywords: Correlated Random Effect; Foreign Direct Investment; Inferences; Panel Data; Quantile Regression Model; Quasi-likelihood; Semiparametric Model; Varying Coefficient Model.

∗Cai’s research is partially supported by the National Natural Science Foundation of China grant #71131008 (Key Project). Fang’s research is partially supported by the National Natural Science Foundation of China grants #70971113, #71271179 and #71131008 (Key Project).
†Corresponding author.
‡E-mail addresses: caiz@ku.edu (Z. Cai), linnachen918@gmail.com (L. Chen), and yifst1@gmail.com (Y. Fang).
1 Introduction

It is well documented in the growth literature that foreign direct investment (FDI) plays an important role in the economic growth process in host countries since FDI is often considered as a vehicle to transfer new ideas, advanced capitals, superior technology and know-how from developed countries to developing countries and so on. However, the existing empirical studies provide contradictory results on whether or not FDI promotes an economic development in host countries.\(^1\) The recent studies in the literature concluded that the mixed empirical evidences may be due to nonlinearities in FDI effects on the economic growth and the heterogeneity across countries.

Indeed, it is well recognized by many economists in empirical studies that a standard linear growth model may be inappropriate for investigating the nonlinear effect of FDI on economic development. The nonlinearity in FDI effects is mainly due to the so called absorptive capacity in host countries, the fact that host countries need some minimum conditions to absorb the spillovers from FDI.\(^2\) Most existing literature to deal with the nonlinearity issue used simply some parametric nonlinear models, for example, including an interacted term in the regression or running a threshold regression. A parametric nonlinear model has the risk of encountering the model misspecification problem. Misspecified models can lead to biased estimation and misleading empirical results. Recently, Henderson, Papageorgiou and Parmeter (2011) and Kottaridi and Stengos (2010) adopted nonparametric regression techniques into a growth model. However, due to the curse of dimensionality in a pure nonparametric estimation, such applications are either restricted by the sample size problem or rely heavily on the variable selection which is not an easy task.

\(^1\)For example, Blomstrom and Persson (1983), Blomstrom, Lipsey and Zejan (1992), De Gregorio (1992), Borensztein, De Gregorio and Lee (1998), De Mello (1999), Ghosh and Wang (2009), Kottaridi and Stengos (2010) among others found positive effects of FDI on promoting the economic growth in various environments. On the other hand, many studies including Haddad and Harrison (1993), Aitken and Harrison (1999), Lipsey (2003), and Carkovic and Levine (2005) failed to find beneficial effects of FDI on the economic growth in host countries. Grog and Strobl (2001) did a meta analysis of 21 studies using the data from 1974 to 2001 that worked on estimating FDI effects on productivity in host countries, of which 13 studies reported positive results, 4 studies reported negative effects and the remaining reported inconclusive evidence.

\(^2\)Nunnemkamp (2004) emphasized the importance of the initial condition for host countries to absorb the positive impacts of FDI. Borensztein, De Gregorio and Lee (1998) found that a threshold stock of human capital in host countries is necessary for them to absorb beneficial effects of advanced technologies brought from FDI, and Hermes and Lensink (2003), Alfaroa, Chandab, Kalemli-Ozcan and Sayek (2004) and Durham (2004) addressed the local financial market conditions of a country’s absorptive capacity.
The heterogeneity among countries is another concern in cross-country studies. Grog and Strobl (2001) found that whether a cross-sectional or time series data model had been used matters for estimating the effect of FDI on the economic growth, because both the cross-sectional and time series models cannot control the country-specific heterogeneity. Recent literature focused on using panel data to estimate growth models, which can control the country-specific unobserved heterogeneity using individual effects. However, including individual effects which only allows a location shift for each country, does not have the ability to deal with the heterogeneity effect of FDI on the economic growth across countries. For example, some studies found that the empirical results changed when the sample included the developed countries. The existing literature to handle this issue is to split sample into groups.\footnote{For example, Luiz and De Mello (1999) considered OECD and non-OECD samples and Kottaridi and Stengos (2010) split the whole sample into high-income and middle-income groups.} Generally speaking, splitting sample can lead to potential theoretical and empirical problems. First, regressing on the split samples separately may lose other parts of information and degrees of freedom, which may lead to inefficient estimation. Secondly, the applied researchers often split sample without following the theoretical guideline on how to select thresholds.

To deal with the aforementioned two issues (nonlinearities and heterogeneity) in a simultaneous fashion, we propose a partially varying-coefficient quantile panel data model with correlated random effects for fixed T to estimate the nonlinear effect of FDI on the economic growth with heterogeneity. Different from the existing literature, we resolve the nonlinearity issue by employing a partially varying-coefficient model which allows some of coefficients to be constant but others, reflecting the effects of FDI on the economic growth, to depend on the country’s initial condition. Compared to a full nonparametric estimation, our model setup can achieve the dimension reduction and accommodate the well recognized economic theory such as the absorptive capacity. In addition to using panel data with individual effects which allows for location shifts for individual countries, we propose a semiparametric conditional quantile regression model instead of commonly used conditional mean models. A conditional quantile model can provide more flexible structures than conditional mean models to characterize heterogeneity among countries. For example, besides including individual effects allowing country-specific heterogeneity, a conditional quantile model allows different
growth equations for different quantiles. Therefore, we can take the advantage of utilizing all sample information to identify the effect of FDI on the economic growth without splitting sample according to development stages. Moreover, estimating all quantiles can provide a whole picture of the conditional distribution and avoid the possibly misleading conditional mean results. In other words, using the quantile approach can characterize the different roles of FDI in economic growth for different types of countries.

The application of conditional quantile model to analyze economic and financial data has a long history that can be traced to the seminal paper by Koenker and Bassett (1978, 1982); see the book by Koenker (2005) for more details. Recently, many studies have focused on nonparametric or semiparametric quantile regression models for either independently identically distributed (iid) data or time series data. However, due to the fact that the approach of taking a difference, which is commonly used in conditional mean panel data (linear) models to eliminate individual effects, is invalid in quantile regression settings, even for linear quantile regression model, the literature on quantile panel data models is relatively small. To the best of our knowledge, the paper by Koenker (2004) is the first paper to consider a linear quantile panel data model with fixed effects, where the fixed effects are assumed to have pure location shift effects on the conditional quantiles of the dependent variable but the effects of regressors are allowed to be dependent on quantiles. Koenker (2004) proposed two methods to estimate such a panel data model with fixed effects by assuming that T goes to infinity. The first method is to solve a piecewise linear quantile loss function by using interior point methods and the second one is the penalized quantile regression method, in which the quantile loss function is minimized by adding L_1 penalty on fixed effects. Recently, in a penalized quantile panel data regression model as in Koenker (2004), Lamarche (2010) discussed how to select the tuning parameter, which can control the degree of shrinkage for fixed effects, whereas Galvao (2011) extended the quantile regression to a dynamic panel data model with

4For example, Chaudhuri (1991) studied nonparametric quantile estimation and derived its local Bahadur representation, He, Ng and Portnoy (1998), He and Ng (1999), and He and Portnoy (2000) considered nonparametric estimation using splines, De Gooijer and Zerom (2003), Yu and Lu (2004), and Horowitz and Lee (2005) focused on additive quantile models, and Honda (2004) and Cai and Xu (2008) studied varying-coefficient quantile models for time series data. In particular, semiparametric quantile models have attracted increasing research interests during the recent years due to their flexibility. For example, He and Liang (2000) investigated the quantile regression of a partially linear errors-in-variable model, Lee (2003) discussed the efficient estimation of a partially linear quantile regression, and Cai and Xiao (2012) proposed a partially varying-coefficient dynamic quantile regression model, among others.
fixed effects by employing the lagged dependent variables as instrumental variables and by extending Koenker (2004)’s first method to Chernozhukov and Hansen (2006)’s quantile instrumental variable framework. Finally, Canay (2011) proposed a simple two-stage method to estimate a quantile panel data model with fixed effects. However, the consistency of the estimator in Canay (2011) relies on the assumption of \(T \) going to infinity and the existence of an initial \(\sqrt{NT} \)-consistent estimator in the conditional mean model.

An alternative way to deal with individual effects in a panel data model when \(T \) is fixed is to treat them as correlated random effects initiated by Chamberlain (1982, 1984) for the mean regression model. Under the framework of Chamberlain (1982, 1984), to estimate the effect of birth inputs on birth weight, Abrevaya and Dahl (2008) employed a linear quantile panel data model with correlated random effects which are viewed as a linear projection onto some covariates plus an error term. The identification of the effects of covariates only requires two-period information. Furthermore, Gamper-Rabindram, Khan and Timmins (2008) estimated the impact of piped water provision on infant mortality by adopting a linear quantile panel data model with random effects where the random effects were allowed to be correlated with covariates nonparametrically. The model can be estimated through a two-step procedure, in which some conditional quantiles were estimated nonparametrically in the first step and in the second step, the coefficients are estimated by regressing the differenced estimated quantiles on the differenced covariates.

The motivation of this study is to examine the role of FDI in the economic growth process based on the cross-country data from 1970 to 1999 by using the proposed partially varying-coefficient quantile regression model for panel data with correlated random effects. Indeed, this model includes the models in Lee (2003), Cai and Xu (2008), and Cai and Xiao (2012) as special cases. In contrast to Koenker (2004), Galvao (2011), and Canay (2011) by requiring that both \(N \) and \(T \) go to infinity in their asymptotics, our model requires only \(N \) going to infinity with \(T \) possibly fixed. Actually, \(T \geq 2 \) is required, and indeed, it is an important assumption for identification; see Abrevaya and Dahl (2008) and Assumption A7 later. Also, different from Abrevaya and Dahl (2008) and Gamper-Rabindram, Khan and Timmins (2008), we use a partially varying-coefficient structure in the conditional quantile model to provide more flexibility in model specification than a linear model. Based on this empirical study, there are some novel findings. We find empirical evidence to support the ab-
sorptive capacity hypothesis, and furthermore, the host countries with fast economic growth can benefit more from FDI than ones with slow economic growth.

The rest of the paper is organized as follows. In Section 2, we introduce a partially varying-coefficient quantile panel data model with correlated random effects and propose a three-stage estimation procedure. Also, the asymptotic properties of our estimators are established. Furthermore, we propose a simple and easily implemented approach for for testing the goodness-of-fit of a parametric model against model (1) and for constructing confidence intervals for parameters. In Section 3, a simulation study is conducted to examine the finite sample performance. Section 4 is devoted to reporting the empirical results of the cross-country panel data growth model. Section 5 concludes.

2 Econometric Modeling

2.1 Model Setup

In this paper, we consider the following partially varying-coefficient panel data quantile model with correlated random effects, in which there are both constant coefficients and varying coefficients. Let Y_{it}, a scalar dependent variable, be the observation on ith individual at time t for $1 \leq i \leq N$ and $1 \leq t \leq T$. The conditional quantile model is given by

$$Q_{\tau}(Y_{it} | U_{it}, X_{it}, \alpha_i) = X_{it,1}'\gamma_{\tau} + X_{it,2}'\beta_{\tau}(U_{it}) + \alpha_i,$$

where $Q_{\tau}(Y_{it} | U_{it}, X_{it}, \alpha_i)$ is the τth quantile of Y_{it} given U_{it}, X_{it}, and α_i. Here, $X_{it} = (X_{it,1}', X_{it,2}')'$, where $X_{it,1}$ and $X_{it,2}$ are regressors with $K_1 \times 1$ and $K_2 \times 1$ dimensions, respectively. γ_{τ} denotes a $K_1 \times 1$ vector of constant coefficients, $\beta_{\tau}(U_{it})$ denotes a $K_2 \times 1$ vector of functional coefficients, U_{it} is an observable scalar smoothing variable, and α_i is an individual effect. Model (1) allows for the dependence of the coefficients, both the constant coefficients and the functional coefficients, upon the quantile, but restricts α_i to a pure location shift effect, which is a common restriction in the quantile panel data literature. If α_i is treated as a fixed effect, to estimate parameters and functionals in model (1), one would follow the ideas in Koenker (2004) by requiring both N and T go to infinity. However, in

\[\text{Footnote 1: For simplicity, we only consider the univariate case for the smoothing variable. The estimation procedure and asymptotic results still hold for the multivariate case with much complicated notation.}\]

\[\text{Footnote 2: This is still an open research problem and it is warranted for a further investigation in the future.}\]
this paper, \(T \) for our case is fixed so that we follow Abrevaya and Dahl (2008) and Gamper-Rabindran, Khan and Timmins (2008) and view the individual effect as a correlated random effect which is allowed to be correlated with covariates \(\mathbf{X}_i = (\mathbf{X}_{i1}', \cdots, \mathbf{X}_{iT}')' \) and \(\{U_{it}\}_{t=1}^T \); that is,

\[
\alpha_i = \alpha(\mathbf{X}_i, U_{i1}, \cdots, U_{iT}) + v_i, \tag{2}
\]

where \(\alpha(\cdot) \) is an unknown function of \(\mathbf{X}_i \) and \(\{U_{it}\}_{t=1}^T \), and \(v_i \) is a random error.

A fully nonparametric model of \(\alpha(\cdot) \) may lead to the problem of the curse of dimensionality and become infeasible in practice. Compared with a linear projection in Chamberlain (1982) and Abrevaya and Dahl (2008), an additive model with functional coefficients can accommodate more flexibility. Thus, we approximate the unknown function \(\alpha(\mathbf{X}_i, U_{i1}, \cdots, U_{iT}) \) by a functional-coefficient model\(^7\) such that

\[
\alpha(\mathbf{X}_i, U_{i1}, \cdots, U_{iT}) = \sum_{t=1}^{T} \mathbf{X}_{it}' \delta_t(U_{it}), \tag{3}
\]

where \(\delta_t(U_{it}) \) is a \(K \times 1 \) vector of unknown functional coefficients.

Finally, in the case of estimating FDI effect on the economic growth in our empirical studies, the smoothing variable varies only across different individual units but keeps constant over time periods.\(^8\) Therefore, in this paper, we focus on the simple case where \(U_{it} = U_i \) for all \(1 \leq t \leq T \). Model (1) can be rewritten as

\[
Q_{\tau}(Y_{it} | U_i, \mathbf{X}_i, v_i) = \mathbf{X}_{it,1}' \gamma_{\tau} + \mathbf{X}_{it,2}' \beta_{\tau}(U_i) + \sum_{t=1}^{T} \mathbf{X}_{it}' \delta_t(U_{it}) + v_i, \tag{4}
\]

It is interesting to note that model (4) covers the following model for quantile regressions with measurement errors in dependent variable (EIV) as a special case. For simplicity, we consider the following simple quantile repression model for \(T = 1 \),

\[
Q_{\tau}(Y_i | \mathbf{X}_i, v_i) = Q_{\tau}(\mathbf{X}_i) + v_i, \tag{5}
\]

where \(Q_{\tau}(\mathbf{X}_i) \) is the \(\tau \)th conditional quantile of \(Y_i^0 = Y_i - v_i \) given \(\mathbf{X}_i \). Here, \(Y_i^0 \) denotes true value but unobservable and \(Y_i \) is the observed value of \(Y_i^0 \) with the measurement error

\(^7\)As elaborated by Cai, Das, Xiong and Wu (2006) and Cai (2010), a functional-coefficient model can be a good approximation to a general fully nonparametric model, \(g(X, Z) = \sum_{j=0}^{d} g_j(Z)X_j = X'g(Z) \).

\(^8\)When \(U_{it_1} \neq U_{it_2} \neq U_i \) for any \(t_1 \neq t_2 \), two estimation approaches can be employed. We can apply the series estimation or adopt a single index method \(U_i = \omega_1U_{i1} + \cdots + \omega_TU_{iT} \) using the iterative backfitting method proposed by Fan, Yao and Cai (2003).
Model (5) might have many potential applications. For example, an empirical example of applying model (5) in labor economics is to study the heterogeneity of returns to education across conditional quantiles of the wage distribution; see Angrist, Chernozhukov and Fernandez-Val (2006) and Hausman, Lu and Palmer (2014) for details and the references therein.

2.2 Estimation Procedures

2.2.1 Pooling Regression Strategy

From model (4), one can observe that the conditional quantile effects of X_{it} on Y_{it} are through two channels: a direct effect γ_τ for constant coefficients and $\beta_\tau(U_i)$ for varying coefficients, and an indirect effect $\delta_t(U_i)$ working through the correlated random effects. Assuming that $T \geq 2$, to identify the direct effects γ_τ and $\beta_\tau(U_i)$, one has to estimate at least two conditional quantile models $Q_\tau(Y_{it} \mid U_i, X_i, v_i)$ and $Q_\tau(Y_{is} \mid U_i, X_i, v_i)$ given by

$$Q_\tau(Y_{it} \mid U_i, X_i, v_i) = X_{it,1}'\gamma_\tau + X_{it,2}'\beta_\tau(U_i) + X_{i1}'\delta_1(U_i) + \cdots + X_{iT}'\delta_T(U_i) + v_i$$

and

$$Q_\tau(Y_{is} \mid U_i, X_i, v_i) = X_{it,1}'\delta_{it}(U_i) + X_{it,2}'\delta_{2t}(U_i) + X_{is,1}'\gamma_t + X_{is,2}'\beta_t(U_i) + \sum_{l \neq t} X_{il}'\delta_l(U_i) + v_i,$$

respectively, where $t \neq s$, $\delta_{it}(U_i)$ is the vector which contains the first K_1 components of $\delta_t(U_i)$, and $\delta_{2t}(U_i)$ is the vector which contains the last K_2 components of $\delta_t(U_i)$. Hence, the estimates of γ_τ and $\beta_t(U_i)$ are respectively given by

$$\gamma_\tau = \frac{\partial Q_\tau(Y_{it} \mid U_i, X_i, v_i)}{\partial X_{it,1}} - \frac{\partial Q_\tau(Y_{is} \mid U_i, X_i, v_i)}{\partial X_{it,1}},$$

and

$$\beta_t(U_i) = \frac{\partial Q_\tau(Y_{it} \mid U_i, X_i, v_i)}{\partial X_{it,2}} - \frac{\partial Q_\tau(Y_{is} \mid U_i, X_i, v_i)}{\partial X_{it,2}}.$$

However, in order to avoid running two separating conditional quantile models, we adopt the pooling regression strategy as in Abrevaya and Dahl (2008) by stacking covariates. In view of model (4), $Q_\tau(Y_{it} \mid U_i, X_i, v_i)$ and $Q_\tau(Y_{is} \mid U_i, X_i, v_i)$ can be expressed as

$$Q_\tau(Y_{it} \mid U_i, X_i, v_i) = X_{it,1}'\gamma_\tau + X_{it,2}'\beta_t(U_i) + X_{i1}'\delta_1(U_i) + \cdots + X_{iT}'\delta_T(U_i) + v_i,$$
\[
Q_\tau(Y_{is}|U_i, X_i, v_i) = X'_{is,1} \gamma_\tau + X'_{is,2} \beta_\tau(U_i) + X'_{i1} \delta_1(U_i) + \cdots + X'_{iT} \delta_T(U_i) + v_i.
\]

Hence, we treat
\[
\begin{pmatrix}
Y_{11} \\
\vdots \\
Y_{iT} \\
Y_{i1} \\
\vdots \\
Y_{iT} \\
Y_{N1} \\
\vdots \\
Y_{NT}
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
X'_{11,1} & X'_{11,2} & X'_{11} & \cdots & X'_{1T} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
X'_{iT,1} & X'_{iT,2} & X'_{i1} & \cdots & X'_{iT} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
X'_{N1,1} & X'_{N1,2} & X'_{N1} & \cdots & X'_{NT} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
X'_{NT,1} & X'_{NT,2} & X'_{NT} & \cdots & X'_{NT}
\end{pmatrix}
\]
as the dependent variable and the right-side explanatory variables, respectively. This pooled regression directly estimates \(\gamma_\tau \) and \(\theta_\tau(U_i) \) with \(\theta_\tau(U_i) = (\beta'_\tau(U_i), \delta'_1(U_i), \ldots, \delta'_T(U_i))' \). We now consider the following transformed model from (4),
\[
Q_\tau(U_i, Z_{it}, v_i) = Z'_{it,1} \gamma_\tau + Z'_{it,2} \theta_\tau(U_i) + v_i,
\]
where \(Z_{it,1} \) denotes the corresponding variables in the first column in the above design matrix, \(Z_{it,2} \) represents those entries in the remaining columns, and \(Z_{it} = (Z'_{it,1}, Z'_{it,2})' \).

2.2.2 Quasi-Likelihood Function

For a conditional quantile regression model, according to Koenker and Bassett (1978), the estimation of parameters can be obtained by minimizing the following objective (loss) function
\[
\hat{\theta}_{KB} = \text{argmin}_{\theta} L_{KB}(\theta), \quad \text{where} \quad L_{KB}(\theta) = \sum_{t=1}^{T} \rho_\tau(y_t - q_\tau(w_t, \theta)),
\]
where \(q_\tau(w_t, \theta) \) is the quantity regression function with unknown parameters \(\theta \), satisfying \(P(y_t \leq q_\tau(w_t, \theta)|w_t) = \tau \), \(\rho_\tau(x) = x(\tau - I_{x<0}) \) is the so-called check function, and \(I_A \) is the indicator function of any set \(A \). Komunjer (2005) generalized the estimation of Koenker and Bassett.
by proposing a class of quasi-maximum likelihood estimations (QMLEs), \(\hat{\theta}_{QMLE} \), obtained by solving

\[
\hat{\theta}_{QMLE} = \arg\max_\theta L_{QMLE}(\theta), \quad \text{where} \quad L_{QMLE} = \sum_{t=1}^{T} \ln l_t(y_t, q_\tau(w_t, \theta)),
\]

\(l_t(\cdot) \) is the conditional quasi-likelihood at the time \(t \). As pointed out by Komunjer (2005), if \(l_t(y_t, q_\tau(w_t, \theta)) \) is taken to be \(C(y_t, w_t) \exp(-\rho_\tau(y_t - q_\tau(w_t, \theta))) \), the QMLE become the conventional estimate of Koenker and Bassett (1978).

We consider a class of QMLEs for conditional quantile for the model defined in (6), obtained by solving the maximization of a quasi-likelihood function for the \(\tau \)th conditional quantile

\[
\hat{\vartheta} = \arg\max_{\vartheta} QL_\tau(\vartheta), \quad \text{where} \quad QL_\tau(\vartheta) = \max_{\vartheta} \sum_{i=1}^{N} \sum_{t=1}^{T} \ln l_\tau(Y_{it}, q_\tau(W_{it}, \vartheta)),
\]

(7)

\(l_\tau(Y_{it}, q_\tau(W_{it}, \vartheta)) \) is the quasi-likelihood function for the \(\tau \)th conditional quantile on individual \(i \) at time \(t \), \(W_{it} = (U_i, Z_{it}') \), \(\vartheta_i = (\gamma_\tau', \theta_\tau'(U_i))' \) and \(\vartheta = (\gamma_\tau', \theta_\tau'(U_1), \ldots, \theta_\tau'(U_N))' \). For simplicity, by assuming that \(v_i \) is iid as normal\(^9\) with mean zero and variance \(\sigma^2 \), \(l_\tau(y, q-v) \) is generated from the integrated quasi-likelihood function for the \(\tau \)th conditional quantile,

\[
l_\tau(y, q-v) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{\infty} ql_\tau(y, q)e^{-\frac{v^2}{2\sigma^2}} dv,
\]

where \(q-v \) indicates the variable \(v \) has been integrated out, and \(ql_\tau(y, q) \) is the quasi-likelihood function for the \(\tau \)th conditional quantile. It is emphasized by Komunjer (2005) that different choices of \(ql_\tau(\cdot, \cdot) \) affect the asymptotic theory of the QMLE for quantile, similar to the case that different choices of likelihood function would affect the asymptotic theory of QMLE for mean model when the object of interest is the conditional mean. In this paper, for simplicity, we define \(ql_\tau(y, q) \) as

\[
ql_\tau(y, q) = e^{-\rho_\tau(y-q)},
\]

(8)

This definition makes \(ql_\tau(\cdot, \cdot) \) belongs to the so-called tick-exponential family defined by Komunjer (2005). Substituting (8) into the integrated quasi-likelihood function for the \(\tau \)th conditional quantile, we have

\[
l_\tau(a, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{\infty} \exp[-\rho_\tau(a-v) - \frac{v^2}{2\sigma^2}] dv,
\]

\(^9\)The normality assumption on \(v_i \) here is just for simplicity to obtain a close form for the quasi-likelihood (see (10) later). Of course, it can be relaxed but the quasi-likelihood function would be very complex. It would be very interesting to explore this issue in the future research.
where \(a = y - q_{-v} \). By a simple calculation, we get

\[
l_r(a, \sigma) = e^{-\rho_r(a)} \lambda_r(a, \sigma)(I_{a \geq 0} + e^{-\lambda} I_{a < 0}),
\]

(9)

where \(\lambda_r(a, \sigma) = e^{\frac{a^2}{2}} \Phi(\frac{a}{\sigma} - \tau \sigma) + e^{(\tau - 1)^2 a^2 \frac{1}{2}} \Phi(\frac{- a}{\sigma} + (\tau - 1) \sigma) e^a \) and \(\Phi(\cdot) \) is the standard normal distribution function. Thus,

\[
\ln l_r(a, \sigma) = -\rho_r(a) + \ln(\lambda_r(a, \sigma)) + \ln(I_{a \geq 0} + e^{-\lambda} I_{a < 0}).
\]

(10)

Clearly, the last two terms in (10) can be regarded as a penalty due to the randomness of \(v_i \). Also, it is easily to show that the penalty approaches to zero as \(\sigma \) goes to zero. When \(\sigma = 0 \), (10) is exactly same as the case without \(v_i \).

Therefore, the quasi-likelihood function \(QL_r(\vartheta, \sigma) \) is given by

\[
QL_r(\vartheta, \sigma) = \sum_{i=1}^N \sum_{t=1}^T \ln l_r(a_{it}, \sigma) = \sum_{i=1}^N \sum_{t=1}^T [-\rho_r(a_{it}) + \ln(\lambda_r(a_{it}, \sigma)) + \ln(I_{a_{it} \geq 0} + e^{-\lambda} I_{a_{it} < 0})].
\]

(11)

Hence, for a given \(\tilde{\sigma} \) satisfying the following equation

\[
\frac{\partial QL_r(\vartheta, \sigma)}{\partial \sigma} \bigg|_{\sigma=\tilde{\sigma}} = NT \tau^2 \tilde{\sigma} + \sum_{i=1}^N \sum_{t=1}^T -\phi(\vartheta_{r, it}(\tilde{\sigma})) + (1 - 2\tau)\tilde{\sigma} e^{\frac{\tilde{\sigma} a_{r-1, it}(\tilde{\sigma})}{2}} \Phi(-a_{r-1, it}(\tilde{\sigma})) = 0
\]

(12)

with \(a_{r, it}(\sigma) = a_{it}/\sigma - \tau \sigma \), the QMLE of \(\vartheta \) is obtained by

\[
\hat{\vartheta} = (\hat{\gamma}_r', \hat{\theta}_r'(U_1), \cdots, \hat{\theta}_r'(U_N)')' = \arg \max_{\vartheta} QL_r(\vartheta, \tilde{\sigma}).
\]

(13)

Remark 1. We can simply estimate \(\vartheta \) and \(\tilde{\sigma} \) by iterating (12) and (13) until convergence.

Given an initial value of \(\tilde{\sigma} \), we can estimate \(\vartheta \) by maximizing \(QL_r(\vartheta, \tilde{\sigma}) \). Alternatively, \(\tilde{\sigma} \) can be obtained by the following

\[
\tilde{\sigma}^2 = \frac{1}{T} \text{Var}\left(Y_{it} - Z_{it,1} \hat{\gamma}_{0.5} - Z_{it,2} \hat{\theta}_{0.5}(U_i) \right) - \frac{1}{12NT^2} \sum_{i=1}^N \sum_{t=1}^T [Z_{it,1}^2 \hat{d}_r(0.5) + Z_{it,2}^2 \hat{d}_0(U_i, 0.5)]^2,
\]

(14)

where \(\hat{d}_r(0.5) \) is the estimate of \(\frac{\partial \gamma_r}{\partial \tau} \big|_{\tau=0.5} \) and \(\hat{d}_0(U_i, 0.5) \) is the estimate of \(\frac{\partial \theta_r(U_i)}{\partial \tau} \big|_{\tau=0.5} \).

Then, we let \(\tilde{\sigma} = \tilde{\sigma} \) and iterate (13) and (14) until convergence.
2.2.3 Three-stage Estimation Procedure

To estimate the semiparametric model (6), similar to Cai and Xiao (2012), we propose a three-stage estimation procedure to the panel data model.

At the first stage, we treat all coefficients as functional coefficients depending on U_i, such as $\gamma_\tau = \gamma_\tau(U_i)$. It is assumed throughout that $\gamma_\tau(\cdot)$ and $\theta_\tau(\cdot)$ are both twice continuously differentiable, and then we apply the local constant approximations to $\gamma_\tau(\cdot)$ and the local linear approximations to $\theta_\tau(\cdot)$ respectively. Hence, model (6) is estimated as a fully functional-coefficient model and following Cai and Xu (2008), the localized quasi-likelihood function is given by

$$\max_{\gamma_0, \theta_0, \theta_1} \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \left[-\rho_\tau(a_{it,1}) + \ln(\lambda_\tau(a_{it,1}, \tilde{\sigma})) + \ln(1_{a_{it,1} \geq 0} + e^{-a_{it,1}} 1_{a_{it,1} < 0}) K_h(U_i - u_0) \right],$$

where $a_{it,1} = Y_{it} - Z'_{it,1} \gamma_0 - Z'_{it,2} \theta_0 - Z'_{it,2} \theta_1(U_i - u_0)$, $\gamma_0 = \gamma_\tau(u_0)$, $\theta_0 = \theta_\tau(u_0)$, $\theta_1 = \dot{\theta}_\tau(u_0)$, $K_h(u) = K(u/h)/h$, and $K(\cdot)$ is the kernel function. Note that \dot{A} and \ddot{A} denote the first order and second order partial derivatives of A throughout the paper.

Since γ_τ is a global parameter, in order to utilize all sample information to estimate γ_τ, at the second stage, we employ the average method to achieve the \sqrt{N} consistent estimator of γ_τ, which is given by

$$\hat{\gamma}_\tau = \frac{1}{N} \sum_{i=1}^{N} \hat{\gamma}_\tau(U_i).$$

Theorem 1 (see later) shows that indeed, $\hat{\gamma}_\tau$ is a \sqrt{N} consistent estimator.

Remark 2. First, it is worth pointing out that the well known profile least squares type of estimation approach (Robinson (1988) and Speckman (1988)) for classical semiparametric regression models may not be suitable to quantile setting due to lack of explicit normal equations. Secondly, the estimator $\hat{\gamma}_\tau$ given in (16) has the advantage that it is easy to construct and also achieves the \sqrt{N}-rate of convergence (see Theorem 1 later). In addition to this simple estimator, other \sqrt{N} consistent estimators of γ_τ can be constructed. For example, to estimate the parameter γ_τ without being overly influenced by the tail behavior of the distribution of U_i, one might use a trimming function $w_i = 1_{\{U_i \in D\}}$ with a compact subset D of \mathbb{R}; see Cai and Masry (2000) for details. Then, (16) becomes the weighted average estimator as

$$\tilde{\gamma}_{w,\tau} = \left(\frac{1}{N} \sum_{i=1}^{N} w_i \right)^{-1} \left[\frac{1}{N} \sum_{i=1}^{N} w_i \hat{\gamma}_\tau(U_i) \right].$$
Indeed, this type of estimator was considered by Lee (2003) for a partially linear quantile regression model. To estimate γ_τ more efficiently, a general weighted average approach can be constructed as follows

$$\hat{\gamma}_{w,\tau} = \left[\frac{1}{N} \sum_{i=1}^{N} W(U_i) \right]^{-1} \left[\frac{1}{N} \sum_{i=1}^{N} W(U_i) \hat{\gamma}_\tau(U_i) \right],$$

where $W(\cdot)$ is a weighting function (a symmetric matrix) which can be chosen optimally by minimizing the asymptotic variance; see Cai and Xiao (2012) for details. For simplicity, our focus is on $\hat{\gamma}_\tau$ given in (16).

At the last step, to estimate the varying coefficients, for a given \sqrt{N}-consistent estimator $\hat{\gamma}_\tau$ of γ_τ which may be obtained from (16), we plug $\hat{\gamma}_\tau$ into model (6) and obtain the partial residual denoted by $Y_{it}^* = Y_{it} - Z_{it} \hat{\theta}_0 - Z_{it} \hat{\theta}_1(U_i - u_0)$. Hence, the functional coefficients can be estimated by using the local linear quantile estimation which is given by

$$\max_{\theta_0, \theta_1} \sum_{i=1}^{N} \sum_{t=1}^{T} \left[-\rho(\tau(a_{it,2}) + \ln(\lambda_\tau(a_{it,2}, \hat{\sigma})) + \ln(1_{a_{it,2} \geq 0} + e^{-a_{it,2} I_{a_{it,2} < 0}}) \right] K_h(U_i - u_0),$$

where $a_{it,2} = Y_{it}^* - Z_{it,2}^\prime \theta_0 - Z_{it,2}^\prime \theta_1(U_i - u_0)$. By moving u_0 along the domain of U_i, the entire estimated curve of the functional coefficient is obtained.

2.3 Asymptotic Properties

This section provides asymptotic results of $\hat{\gamma}_\tau$ and $\hat{\beta}_\tau(u_0)$ defined in Section 2.2.3. All notations and proofs are relegated to the appendices.

The following assumptions are necessary to establish the consistency and asymptotic normality of our estimators, although they might not be the weakest ones.10

Assumptions:

A1. The series $\{U_i\}$ is iid. The series $\{Z_{it}\}$ is iid across individual i, but can be correlated around t for fixed i. The series $\{v_i\}$ is iid $N(0, \sigma^2)$.

A2. The distribution of Y given U and Z has an everywhere positive Lebesgue density $f_{Y|U,Z}(\cdot)$, which is bounded and satisfies the Lipschitz continuity condition.

A3. The kernel function $K(\cdot)$ is a symmetric bounded density with a bounded support region.

10The assumptions are imposed for a fixed u_0 and a fixed τ, and the same assumptions are imposed on the finite points of interest.
A4. Assume that the functional coefficients $\theta(u_0)$ are 2 times continuously differentiable in a small neighborhood of u_0. The marginal density smoothing variable U, $f_U(\cdot)$, is continuous with $f_U(u_0) > 0$. Assume all the variance-covariance matrix are positive-definite and continuously differentiable in a neighborhood of u_0.

A5. Assume that $E(||Z||^{\delta^*}) < \infty$ with $\delta^* > 4$.

A6. Assume that bandwidth $h_1 \to 0$, $h_2 \to 0$, $Nh_1 \to \infty$ and $Nh_2 \to \infty$ as $N \to \infty$. Furthermore, $Nh_4^2 \to 0$.

A7. Assume that $T \geq 2$.

Assumption A1 assumes the data to be iid across individual i, but allows for arbitrary correlation around t for given i. The normality assumption of v_i can be relaxed by using some approximation approaches such as Laplace or saddle point approximation, or E-M algorithm, but the quasi-likelihood will be complex since there is no close form of the quasi-likelihood like (9). Note that we do not exclude the heteroscedasticity dependence between individual effects and covariates through correlated random effects. Assumptions from A2 to A5 are standard in the nonparametric literature which impose some smooth and moment conditions on functionals involved. Assumptions A6 and A7 require that N go to infinity but T can be short. For the model with large T, some appropriate mixing condition should be imposed to restrict the dependence structure across t.

As mentioned above, a \sqrt{N} consistent estimator of γ_τ at the second stage is constructed by using the average method defined in (16). The following Theorem 1 states its asymptotic normality result which can be obtained by using the U-statistic technique in Powell, Stock and Stoker (1989).

Theorem 1. Suppose that Assumptions A1-A7 hold, we have

$$\sqrt{N}[\hat{\gamma}_\tau - \gamma_\tau - B_{\gamma,\tau}(\sigma)] \xrightarrow{D} N(0, \Sigma_{\gamma,\tau}(\sigma)).$$

where $B_{\gamma,\tau}(\sigma)$ and $\Sigma_{\gamma,\tau}(\sigma)$ are defined in Appendix B.

Results of Theorem 1 shows that the estimator $\hat{\gamma}_\tau$ is \sqrt{N} consistent and is asymptotically unbiased when the bandwidth h_1 satisfies $\sqrt{Nh_1^2} \to 0$, which implies under-smooth at the first stage. Appendix B shows that the bias and variance in the above theorem are equal to $B_{\gamma,\tau}$ and $\Sigma_{\gamma,\tau}$, the cases that the asymptotic normality of the estimate for constant coefficients
reduces to the case without v_i when $\sigma = 0$, because $B_{\gamma,\tau}(\sigma)$ and $\Sigma_{\gamma,\tau}(\sigma)$ are exactly the same as the corresponding asymptotic bias and variance of the estimate for constant coefficients relating to the case without v_i, when $\sigma = 0$. Therefore, clearly, comparing the above theorem with Theorem 1 in Cai and Xiao (2012), the asymptotic bias term, $B_{\gamma,\tau}$, is the same but the asymptotic variance, $\Sigma_{\gamma,\tau}$, depends on T.

At the last stage, the partial residuals Y_{it}^* are used to estimate $\hat{\theta}_\tau(u_0)$. The following theorem depicts the asymptotic normality result of $\hat{\beta}_\tau(u_0)$, where $\hat{\beta}_\tau(u_0) = e_2' \hat{\theta}_{0,\tau}(u_0)$.

Theorem 2. Suppose that Assumptions A1-A7 hold, given the \sqrt{N} consistent estimator of γ_τ, we have

$$\sqrt{Nh_2} [\hat{\beta}_\tau(u_0) - \beta_\tau(u_0) - B_{\beta,\tau}(u_0)] \rightarrow N(0, \Sigma_{\beta,\tau}(u_0, \sigma))$$

where $B_{\beta,\tau}(u_0)$ and $\Sigma_{\beta,\tau}(u_0, \sigma)$ are defined in Appendix B.

Results of Theorem 2 shows that the asymptotic normality of the estimate for varying coefficients becomes to the case without v_i when $\sigma = 0$, because $\Sigma_{\beta,\tau}(u_0, \sigma)$ is exactly the same as $\Sigma_{\beta,\tau}(u_0)$, the corresponding asymptotic variance of the estimate for varying coefficients relating to the case without v_i, when $\sigma = 0$. Compared with Theorem 1 in Cai and Xu (2008) and Theorem 2 in Cai and Xiao (2012), the asymptotic bias term in the above theorem is the same but the asymptotic variance, $\Sigma_{\beta,\tau}(u_0)$, depends on T. Clearly, the optimal bandwidth is $h_{2, opt} = O(N^{-1/5})$ by minimizing the asymptotic mean squared error with the optimal order of $O(N^{-4/5})$. This means that the regular bandwidth selection procedures can be applied here.

2.4 Inferences

Now we turn to discussing how to test constancy on varying coefficients and accordingly construct confidence intervals. To make statistical inferences for γ_τ and $\beta_\tau(\cdot)$ in practice, we firstly need to obtain consistent covariance estimators of $\Sigma_{\gamma,\tau}(\sigma)$ and $\Sigma_{\beta,\tau}(u_0, \sigma)$, respectively. To this end, we need to estimate $\Omega_{z\hat{g}}(u_0, \sigma)$, $\Omega_{r,z}(u_0, \sigma)$, $\Omega_{r,z1t}(u_0, \sigma)$, $\Omega_{z\hat{g}}(u_0, \sigma)$, $\Omega_{r,z2}(u_0, \sigma)$ and $\Omega_{r,z1t,2}(u_0, \sigma)$ consistently. Since the estimation of $\Omega_{z\hat{g}}(u_0, \sigma)$, $\Omega_{r,z2}(u_0, \sigma)$ and $\Omega_{r,z1t,2}(u_0, \sigma)$ is similar to $\Omega_{z\hat{g}}(u_0, \sigma)$, $\Omega_{r,z}(u_0, \sigma)$ and $\Omega_{r,z1t}(u_0, \sigma)$, respectively, we here only focus on the latter to save notations.
We define
\[\hat{\Omega}_z(u_0) = (NT)^{-1} \sum_{i=1}^{N} \sum_{t=1}^{T} Z_{it} Z_{it}' K_h(U_i - u_0), \]
\[\hat{\Omega}_{zi}(u_0) = (N(T - t))^{-1} \sum_{i=1}^{N} \sum_{s=1}^{T-t} Z_{is} Z'_{i(s+t)} K_h(U_i - u_0), \]
\[\hat{\Omega}_{zg}(u_0, \sigma) = (NT)^{-1} \sum_{i=1}^{N} \sum_{t=1}^{T} Z_{it} Z_{it}' \hat{m}_g(u_0, Z_{it}, \sigma) K_h(U_i - u_0) \]
and
\[\hat{\Omega}_{zi,g}(u_0, \sigma) = (N(T - t))^{-1} \sum_{i=1}^{N} \sum_{s=1}^{T-t} Z_{is} Z'_{i(s+t)} \hat{m}_g(u_0, Z_{i(s+t)}, \sigma) K_h(U_i - u_0), \]
where
\[\hat{m}_g(u, z, \sigma) = \frac{\sum_{i=1}^{N} \sum_{t=1}^{T} K_h(U_i - u, Z_{it} - z) g(Y_{it} - z'_i \gamma^*_r - z'_i \theta_r(u), \sigma)}{\sum_{i=1}^{N} \sum_{t=1}^{T} K_h(U_i - u, Z_{it} - z)}. \]

It can be easily shown that \(\hat{\Omega}_z(u_0) = f_U(u_0) \hat{\Omega}_z(u_0) + o_p(1), \) \(\hat{\Omega}_{zg}(u_0, \sigma) = f_U(u_0) \hat{\Omega}_{zg}(u_0, \sigma) + o_p(1), \) \(\hat{\Omega}_{zi}(u_0) = f_U(u_0) \hat{\Omega}_{zi}(u_0) + o_p(1) \) and \(\hat{\Omega}_{zi,g}(u_0, \sigma) = f_U(u_0) \hat{\Omega}_{zi,g}(u_0, \sigma) + o_p(1). \)

Similarly, we can get the consistent estimators of \(\hat{\Omega}_{zg^2}(u_0, \sigma), \) \(\hat{\Omega}_{zi,g_1}(u_0, \sigma) \) and \(\hat{\Omega}_{zg}(u_0, \sigma). \)

Then, \(\hat{\Omega}_{\tau,z}(u_0, \sigma) = \tau^2 \hat{\Omega}_z(u_0) - 2\tau \hat{\Omega}_{zg}(u_0, \sigma) + \hat{\Omega}_{zg^2}(u_0, \sigma) \) and \(\hat{\Omega}_{\tau,zi}(u_0, \sigma) = \tau^2 \hat{\Omega}_{zi}(u_0) - 2\tau \hat{\Omega}_{zi,g}(u_0, \sigma) + \hat{\Omega}_{zi,g_1}(u_0, \sigma). \)

Next, the consistent covariance estimators of \(\Sigma_{\gamma,\tau}(\sigma) \) can be respectively given by
\[\hat{e}' N^{-1} \sum_{i=1}^{N} \hat{\Omega}_{zi}(U_i, \sigma)^{-1} \hat{\Omega}_{\tau,z}(U_i, \sigma) + \sum_{t=2}^{T} \frac{2(T-t+1)}{T^2} \hat{\Omega}_{\tau,zi}(U_i, \sigma) \hat{\Omega}_{zg}(U_i, \sigma) e_1. \]

Finally, the consistent estimate of \(\hat{\Sigma}_{\beta,\tau}(u_0, \sigma) \) can be constructed accordingly in an obvious manner.

In empirical studies, it is of importance to test the constancy of the varying coefficients. Following Cai and Xiao (2012), a null hypothesis is given by
\[H_0 : \beta_r(u_j) = \beta_r \text{ for some } \{u_j\}_{j=1}^{q}, \]
where \(\{u_j\}_{j=1}^{q} \) denotes a set of distinct points within the domain of \(U_i. \) Cai and Xiao (2012) provided some comments on the choice of \(\{u_j\}_{j=1}^{q} \) and \(q \) in practice. Under the null hypothesis, a simple and easily implemented test statistics can be constructed as follows
\[T_N = \sum_{1 \leq j \leq q} ||\sqrt{N} \hat{\Sigma}_{\beta,\tau}(u_j, \sigma)^{1/2}(\hat{\beta}_r(u_j) - \beta_r)||^2 \rightarrow \chi^2_{qK_2} \] (18)
where $\chi^2_{qK_2}$ is a chi-squared random variable with qK_2 degrees of freedom. Thus, the null is rejected if T_N is too large. Note that the proposed test statistic T_N in (18) is different from that in Cai and Xiao (2012). Of course, other types of test statistics may be constructed and it would be warranted as future research topics.

3 A Monte Carlo Simulation Study

In this section, we conduct Monte Carlo simulations to demonstrate the finite sample performance of the proposed estimators for both constant and functional coefficients. We consider the following data generating process

$$Q_\tau(Y_{it}|U_i, X_i, v_i) = \gamma_{0,\tau} + X_{it,1}\gamma_{1,\tau} + X_{it,2}\beta_\tau(U_i) + \sum_{t=1}^{T} X_{it,2}\delta_t(U_i) + v_i$$

with $T = 2$, where the smoothing variable U_i is generated from iid $U(-2.5, 2.5)$, $X_{it,1}$ and $X_{it,2}$ are respectively generated from iid $U(0, 3)$ and $U(0, 2)$, and v_i is generated from iid $N(0, \sigma^2)$ with $\sigma = 0.3$. Y_{it} is generated base on the Skorohod representation. The constant coefficients above are set by $\gamma_{0,\tau} = 2 + \tau$ and $\gamma_{1,\tau} = -1.5 + \tau$, respectively. The functional coefficients are defined as $\beta_\tau(u) = 0.5\cos(2u) + u/3 + \tau$, $\delta_1(u) = \sin(1.5u)$ and $\delta_2(u) = 1.5e^{-u^2} - 0.75$.

To measure the performance of $\hat{\gamma}_{j,\tau}$ for $0 \leq j \leq 2$ and $\hat{\beta}_\tau(\cdot)$, we use the mean absolute deviation errors (MADE) of the estimators, which is defined by

$$\text{MADE}(\hat{\beta}_\tau(\cdot)) = \frac{1}{n_0} \sum_{l=1}^{n_0} |\hat{\beta}_\tau(u_l) - \beta_\tau(u_l)|,$$

where $\{u_l\}_{l=1}^{n_0}$ are the grid points within the domain of U_i, and

$$\text{MADE}(\hat{\gamma}_{j,\tau}) = |\hat{\gamma}_{j,\tau} - \gamma_{j,\tau}|$$

for $0 \leq j \leq 2$.

We consider three different sample sizes, $N = 200, 500$ and 1000, respectively. For each given sample size, we repeat simulations by 500 times to calculate the MADE values. We compare the estimation results using different bandwidths, for example, $h_1 = 5N^{-2/5}$ (under-smooth) and $h_2 = cN^{-1/5}$, where c is chosen from $1.5, 1.7, 2, 2.2, 2.5, 2.7, 3.0, \ldots$. From simulation results we find that the estimation of constant coefficients is not sensitive to the choice of the bandwidth when the first step is under-smoothed, and the estimation of $\beta_\tau(\cdot)$ is
quite stable when the bandwidth is chosen within a reasonable range. The optimal bandwidth for estimating functional coefficient $\beta_\tau(\cdot)$ in our experiments is about $h_2 = 2.7N^{-1/5}$.

The simulation results of the median and standard deviation (denoted by SD) in parentheses for both estimators are summarized in Table 1. From Table 1, we can observe that the medians of 500 MADE values in all settings decrease significantly as N increases. For example, when the sample size increases from 200 to 1000, the medians of MADE values for $\hat{\gamma}_{0.15}, \hat{\gamma}_{1.0.15}$ and $\hat{\beta}_{0.15}(\cdot)$ all shrink quickly, from 0.1399 to 0.0849, from 0.0937 to 0.0525, and from 0.1912 to 0.0997, respectively. The standard deviations also shrink quickly when the sample size is enlarged. For example, for $\hat{\gamma}_{0.15}$, the standard deviations shrink from 0.1237 to 0.0616, and for $\hat{\gamma}_{1.0.15}$ and $\hat{\beta}_{0.15}(\cdot)$, they decrease from 0.0821 to 0.0379 and from 0.0538 to 0.0266, respectively. Similar results can also be observed at the median, $\tau = 0.5$, and at the upper quantile, $\tau = 0.75$. All are in line with our asymptotic theory which implies that our proposed estimators are indeed consistent. Compared with the estimation of $\hat{\beta}_\tau(\cdot)$, the shrinkage speed of the estimation of $\hat{\gamma}_1(\cdot)$ is relatively fast, which is also consistent with the theoretical results in the previous sections.

<table>
<thead>
<tr>
<th></th>
<th>$\tau = 0.15$</th>
<th></th>
<th>$\tau = 0.5$</th>
<th></th>
<th>$\tau = 0.75$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>γ_0,τ</td>
<td>γ_1,τ</td>
<td>$\beta_\tau(\cdot)$</td>
<td>γ_0,τ</td>
<td>γ_1,τ</td>
</tr>
<tr>
<td>200</td>
<td>0.1399 (0.1237)</td>
<td>0.0937 (0.0821)</td>
<td>0.1912 (0.0538)</td>
<td>0.1338 (0.1167)</td>
<td>0.0796 (0.0704)</td>
</tr>
<tr>
<td>500</td>
<td>0.1018 (0.0827)</td>
<td>0.0648 (0.0494)</td>
<td>0.1317 (0.0369)</td>
<td>0.0729 (0.0761)</td>
<td>0.0502 (0.0461)</td>
</tr>
<tr>
<td>1000</td>
<td>0.0894 (0.0616)</td>
<td>0.0525 (0.0379)</td>
<td>0.0997 (0.0266)</td>
<td>0.0548 (0.0529)</td>
<td>0.0382 (0.0323)</td>
</tr>
</tbody>
</table>

4 Modeling the Effect of FDI on Economic Growth

4.1 Empirical Models

A typical linear model in empirical studies to estimate the impact of FDI on economic growth, such as Kottaridi and Stengos (2010), is given by

$$y_{it} = \alpha_i + \beta_1(FDI/Y)_{it} + \beta_2 \log(DI/Y)_{it} + \beta_3 n_{it} + \beta_4 h_{it} + \varepsilon_{it},$$

(20)
where y_{it} denotes the growth rate of GDP per capita in the country or region i during the period t, α_i is the individual effect used to control the unobserved country-specific heterogeneity, n_{it} is the logarithm of population growth rate, h_{it} is the human capital, and ε_{it} is random error. Moreover, the FDI and DI in (20) refer to foreign direct investment and domestic investment respectively and Y represents the total output. Hence, $(\text{FDI}/Y)_{it}$ denotes the average ratio between the FDI and the total output during the period t in country i and $(\text{DI}/Y)_{it}$ is defined in the same fashion for the domestic investment. To allow the possible joint effect of FDI and human capital, some literatures considered to add an interacted term between FDI and human capital into the empirical growth model, then (20) becomes

$$y_{it} = \alpha_i + \beta_1(\text{FDI}/Y)_{it} + \beta_2\log(\text{DI}/Y)_{it} + \beta_3n_{it} + \beta_4h_{it} + \beta_5((\text{FDI}/Y)_{it} \times h_{it}) + \varepsilon_{it}, \quad (21)$$

see Kottaridi and Stengos (2010) and the references therein.

Since the majority of the literature realized that the effect of FDI on the economic growth depends on the absorptive capacity in host countries and the initial GDP per capita is one of the most important indicators to reflect the initial conditions and the absorptive capacity in the host country; see Hansen (2000), Nunnemkamp (2004), and among others, we hereby propose a partially varying-coefficient model which allows the effect of FDI on the economic growth to depend on the initial GDP per capita in the host country. Hence, our first empirical econometric model is the following conditional semiparametric mean model given by

$$y_{it} = \alpha_i + \beta_1(U_i)(\text{FDI}/Y)_{it} + \beta_2\log(\text{DI}/Y)_{it} + \beta_3n_{it} + \beta_4h_{it} + \beta_5((\text{FDI}/Y)_{it} \times h_{it}) + \varepsilon_{it}, \quad (22)$$

where U_i is the logarithm of initial GDP per capita in country i and $\beta_1(U_i)$ is the varying coefficient over the logarithm of initial GDP per capita U_i. Therefore, model (22) has an ability to characterize how FDI may have different nonlinear effects on economic growth among host countries with different initial conditions. Note that model (22) is new in the growth literature on studying the effect of FDI on the economic growth even under the conditional mean framework.

Moreover, as we discussed in the introduction, the conditional mean model in (22) is usually insufficient to control the heterogeneity among countries although (22) has some nice properties. The existing literature dealt with the aforementioned issues by simply looking at sub-samples. Instead, in this paper, we propose adopting a quantile regression approach
to investigate the impact of FDI on economic growth. Our method is capable of dealing with heterogeneity among countries by allowing different quantiles to have different empirical growth equations, and at the same time, we can avoid splitting the sample. Different from the mean model, another advance of considering the quantile model is to effectively characterize the heterogeneity effect of FDI in different groups of countries, for example, the economy fast growing countries (upper quantile) and the economy slowly growing countries (lower quantile).

Finally, we consider the following conditional quantile model,

\[Q_{\tau}(y_{it} | U_{it}, X_{it}, \alpha_{i}) = \alpha_{i} + \beta_{1,\tau}(U_{i})(FDI/Y)_{it} + \beta_{2,\tau} \log(DI/Y)_{it} + \beta_{3,\tau} h_{it} + \beta_{4,\tau}((FDI/Y)_{it} \times h_{it}), \]

which can be regarded as a special case of model (1). Imposing the correlated random effect assumption in (3), we can derive the transformed conditional quantile regression model in (6). Therefore, the three-stage estimation procedures described in Section 2 can be applied here.

4.2 The Data and Empirical Results

Our data set includes 95 countries or regions from 1970 to 1999. To smooth the yearly fluctuations in aggregate economic variables, we take five-year averages by following the convention in the empirical growth literature; see Maasoumi, Racine and Stengos (2007), Durlauf, Kourtellos and Tan (2008), and Kottaridi and Stengos (2010). The population growth is computed by the average annual growth rate in each period, the human capital is measured as mean years of schooling in each period, and the domestic investment refers to the average of the domestic gross fixed capital formation measured by the US dollars in 2000 constant values. We measure the initial GDP by the GDP per capita of each country in the beginning year of each decade in constant 2000 US dollars.\(^\text{11}\) All the above data are available to be downloaded from World Development Indicators (WDI). The FDI flows, in constant 2000 US dollars, are taken from United Nations Conference on Trade and Development (UNCTAD). The full list of countries and regions can be found in Table 5 in Appendix A.

\(^\text{11}\)We combine three decades, from 1970 to 1979 (69 countries), from 1980 to 1989 (93 countries), and from 1990 to 1999 (95 countries), and then obtain a panel of 514 observations with N = 257 and T = 2.
Firstly, we consider the classical linear regression model in (21). Table 2 presents corresponding estimation results, including coefficient estimates, standard deviations, t-values and p-values from Column 2 to Column 5, respectively. The estimate of the FDI effect, denoted by β_1, is about 0.56, which is positive and significant with a p-value of 0.027. On average, the linear conditional mean model reports a mild positive effect of FDI on promoting the economic growth. Compared to the growth effect of FDI, Table 2 reports a larger effect of domestic investments on the economic growth, which is about 2.72 and highly significant with the p-value of 0.009. The effect of population growth (β_3) is also positive and significant, with an estimate around 0.65. However, other estimates (the effect of human capital and the effect of the interacted term between human capital and FDI) are not significant.

Table 2: Empirical results of a linear conditional mean model in (21)

<table>
<thead>
<tr>
<th>Mean Model</th>
<th>Coefficient</th>
<th>Standard Deviation</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_1</td>
<td>0.5589</td>
<td>0.2513</td>
<td>2.2248</td>
<td>0.0270 *</td>
</tr>
<tr>
<td>β_2</td>
<td>2.7180</td>
<td>1.0374</td>
<td>2.6206</td>
<td>0.0093 **</td>
</tr>
<tr>
<td>β_3</td>
<td>0.6483</td>
<td>0.2575</td>
<td>2.5183</td>
<td>0.0124 *</td>
</tr>
<tr>
<td>β_4</td>
<td>-0.0290</td>
<td>0.4269</td>
<td>-0.0682</td>
<td>0.9458</td>
</tr>
<tr>
<td>β_5</td>
<td>-0.0359</td>
<td>0.0375</td>
<td>-0.9561</td>
<td>0.3401</td>
</tr>
</tbody>
</table>

Next, we move to the partially varying-coefficient conditional mean model in (22). Compared to the linear model in (21), we now allow the effect of FDI to depend on the initial conditions. Figure 1 and Table 3 present the corresponding estimation results. The solid line in Figure 1 represents the nonparametric estimate of the varying coefficient $\beta_1(\cdot)$ along various values of initial GDP, and the shaded area is the corresponding 90% pointwise confidence intervals where the higher order bias is ignored. The nonparametric estimate shows a mild but clear pattern that the growth effect of FDI increases as the initial GDP improves, which is in line with the hypothesis of the absorptive capacity. The range of the estimated values of the varying coefficient is between 0.9 and 1.6 for different initial GDPs, much larger than 0.56, the estimated value of the linear model. Table 3 reports the estimates of constant coefficients in (22), which are quite different from the corresponding estimation results in Table 2. For example, in Table 3, the estimate of β_2 is now 3.81 in stead of 2.72. The impact of population growth rate on the economic growth now becomes to be significantly negative with an estimate of -1.18. Moreover, both the coefficients of human capital and the inter-
acted term between FDI and human capital become significant in Table 3. The estimate of the impact of human capital is positive with a value of 0.17 and the estimate of the interacted term is -0.18. We attribute the different estimation results to the existence of nonlinearity in the regression model.

Table 3: Constant coefficients of a partial linear conditional mean model in (22)

<table>
<thead>
<tr>
<th>Mean Model</th>
<th>Coefficient</th>
<th>Standard Deviation</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_2</td>
<td>3.8100</td>
<td>0.1321</td>
<td>28.8326</td>
<td>0.0000 ***</td>
</tr>
<tr>
<td>β_3</td>
<td>-1.1838</td>
<td>0.3357</td>
<td>-3.5268</td>
<td>0.0004 ***</td>
</tr>
<tr>
<td>β_4</td>
<td>0.1728</td>
<td>0.0268</td>
<td>6.4519</td>
<td>0.0000 ***</td>
</tr>
<tr>
<td>β_5</td>
<td>-0.1753</td>
<td>0.0112</td>
<td>-15.5394</td>
<td>0.0000 ***</td>
</tr>
</tbody>
</table>

Figure 1: Estimated curve of functional coefficient $\beta_1(\cdot)$ in model (22) together with the pointless 90% confidence interval with the bias ignored.

Finally, we consider the partially varying-coefficient quantile model in (23). We firstly conduct a constancy test as in Section 3.3 to testing whether or not all coefficients vary with the initial GDP at different quantile levels. The testing results are summarized in Table 4. It turns out that the constancy test only strongly rejects the null of constancy of $\beta_{1,\tau}(\cdot)$ but not other coefficients. All these results support our model setup in (23), where the coefficient of FDI depends on the initial conditions but others remain constant.
Table 4: p-values of testing constancy

<table>
<thead>
<tr>
<th>τ</th>
<th>$\beta_{1,\tau}$</th>
<th>$\beta_{2,\tau}$</th>
<th>$\beta_{3,\tau}$</th>
<th>$\beta_{4,\tau}$</th>
<th>$\beta_{5,\tau}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>< 0.0001</td>
<td>0.9689</td>
<td>> 0.9999</td>
<td>0.9993</td>
<td>> 0.9999</td>
</tr>
<tr>
<td>0.50</td>
<td>< 0.0001</td>
<td>> 0.9999</td>
<td>> 0.9999</td>
<td>0.9025</td>
<td>0.9933</td>
</tr>
<tr>
<td>0.75</td>
<td>< 0.0001</td>
<td>0.8000</td>
<td>> 0.9999</td>
<td>0.9425</td>
<td>> 0.9999</td>
</tr>
</tbody>
</table>

Figure 2 presents the estimates of all four constant coefficients $\beta_{j,\tau}$ for $2 \leq j \leq 5$ under different quantile levels as $\tau = 0.15, 0.25, 0.35, 0.45, \cdots, 0.75, 0.85$. The horizontal axis represents different quantiles and the vertical axis measures the estimated value of $\beta_{j,\tau}$. The curves in solid line denote the estimates under different quantiles and the areas in dark gray color are corresponding 90% confidence intervals. The horizontal solid lines denote the estimates under conditional mean model and the areas in light gray color are corresponding 90% confidence intervals. Except the estimated values of $\beta_{3,\tau}$ in the upper left panel in Figure 2, most estimated values are outside the 90% confidence intervals of the conditional mean estimates, implying that indeed, $\beta_{j,\tau}$ changes over τ and the conditional mean model might be inadequate to catch the heterogeneity effect. We observe that the estimated values of $\beta_{2,\tau}$ increase with τ when τ is bigger than 0.35 but the estimated values of $\beta_{5,\tau}$ decrease with τ when τ is in the range from 0.25 to 0.75. The estimated values of $\beta_{4,\tau}$ decrease with τ when $\tau < 0.5$ and increase with τ when $\tau > 0.5$. Moreover, the estimated values of $\beta_{2,\tau}$ and $\beta_{4,\tau}$ are all positive but the estimated values of $\beta_{3,\tau}$ and $\beta_{5,\tau}$ are all negative. Hence, generally speaking, we find a clear evidence that domestic investments and human capitals have positive effects on the economic growth, while the effects of domestic investments are larger and increase more significantly in countries or regions with better economic growth performance than those with poor growth performance and the effects of human capitals show a U-shape across countries or regions from poorer economic growth performance to better economic growth performance.
The nonparametric estimates of functional coefficient $\beta_{1,\tau}(\cdot)$ with the upper ($\tau = 0.75$, in the dashed line) and lower ($\tau = 0.15$, in the solid line) quantiles are demonstrated in Figure 3. The horizontal axis measures different values of log of initial GDP, U_{i}, and the vertical axis measures the nonparametric estimated values of $\beta_{1,\tau}(\cdot)$. The shaded areas represent the 90% confidence intervals of $\hat{\beta}_{1,\tau}(\cdot)$, where the higher order bias is ignored. We observe that the estimated values of $\beta_{1,\tau}(\cdot)$ at the upper quantile significantly higher than those at the lower quantile uniformly over the values of initial GDPs, which is on line with the testing results in Table 4. In general, our empirical findings support the hypothesis of absorptive capacity. The initial conditions really matter for host countries to benefit from adopting foreign direct investments. At the upper quantile, the estimated values of $\beta_{1,\tau}(\cdot)$ generally increase with the value of initial GDPs, and furthermore, the tendency of increase speeds up when $U_{i} > 8.2$. However, at the lower quantile, although the estimated curve has an overall positive slope, it becomes almost flat when U_{i} is larger than 8.2 for host countries.
Figure 3: Estimated curves of functional coefficient $\beta_{1,\tau}(\cdot)$ in model (23) for $\tau = 0.15$ (solid line) and $\tau = 0.75$ (dashed line) and their corresponding 90% pointwise confidence intervals with the bias ignored.

5 Conclusion

Quantile panel data models have gained a lot of attentions in the literature during recent years. In this paper, we propose a partially varying-coefficient quantile panel data model with correlated random effects. Compared to quantile panel data models with fixed effect, our estimation assumes only large N and short T, while the latter requires that both N and T go to infinity. In our semiparametric model, we allow some coefficients to vary with other economic variables while others keep constant. This novel semiparametric quantile panel data model is applied to estimating the impact of FDI on the economic growth.

There are several issues still worth of further studies. First, it is reasonable to allow for cross sectional dependence in the current model. In the literature of conditional mean models, some methods have been developed to deal with cross sectional dependence, for example, using the factor structure or the interactive effect. However, due to the nature of conditional quantile model, it is not obvious to extend these under the quantile setup. Second, it is also interesting to address a dynamic structure and endogeneity issue in conditional quantile
panel data models. We leave these important issues as future research topics.

Appendix A: Table of Countries and Regions

<table>
<thead>
<tr>
<th>Country</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algeria</td>
<td>Australia</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>Barbados</td>
</tr>
<tr>
<td>Bolivia</td>
<td>Botswana</td>
</tr>
<tr>
<td>Canada</td>
<td>Central African Republic</td>
</tr>
<tr>
<td>Colombia</td>
<td>Congo, Rep.</td>
</tr>
<tr>
<td>Denmark</td>
<td>Dominican Republic</td>
</tr>
<tr>
<td>El Salvador</td>
<td>Fiji</td>
</tr>
<tr>
<td>Gambia</td>
<td>Germany</td>
</tr>
<tr>
<td>Guatemala</td>
<td>Guyana</td>
</tr>
<tr>
<td>Hungary</td>
<td>Iceland</td>
</tr>
<tr>
<td>Iran, Islamic Rep.</td>
<td>Ireland</td>
</tr>
<tr>
<td>Jamaica</td>
<td>Japan</td>
</tr>
<tr>
<td>Korea, Rep.</td>
<td>Lesotho</td>
</tr>
<tr>
<td>Mali</td>
<td>Malta</td>
</tr>
<tr>
<td>Mozambique</td>
<td>Nepal</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>Niger</td>
</tr>
<tr>
<td>Panama</td>
<td>Papua New Guinea</td>
</tr>
<tr>
<td>Philippines</td>
<td>Poland</td>
</tr>
<tr>
<td>Senegal</td>
<td>Sierra Leone</td>
</tr>
<tr>
<td>Spain</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>Sweden</td>
<td>Switzerland</td>
</tr>
<tr>
<td>Togo</td>
<td>Trinidad and Tobago</td>
</tr>
<tr>
<td>Uganda</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Venezuela, RB</td>
<td>Zambia</td>
</tr>
</tbody>
</table>

Appendix B: Notations and Definitions

All notations and definitions given here will be used in Sections 2.3 and 2.4 and in the following appendices.

We define $\mu_j = \int_{-\infty}^{\infty} u^j K(u)du$ and $\nu_j = \int_{-\infty}^{\infty} u^j K^2(u)du$ with $j \geq 0$, and denote h_1 and h_2 to be the bandwidths used at the first and third stages, respectively. Let $e_1' = (I_{K_1^*}^*, 0_{K_2^*}^*)$ and $e_2' = (I_{K_1^*}^*, 0_{K_2 \times KT})$, where $K^* = K_1^* + K_2^*$, $K_1^* = K_1$ and $K_2^* = K_2 + KT$. Denote $f_U(\cdot)$ by the marginal density of U.

Let \(g_\tau(a, \sigma) = \partial \ln(\lambda_\tau(a, \sigma)) / \partial a \) \(^{12}\), \(b_{it,1}(u_0) = Y_{it} - Z'_{it,1} \gamma_\tau - Z'_{it,2} \theta_\tau(u_0) \) and \(b_{it,2}(u_0) = Y_{it}^* - Z'_{it,2} \theta_\tau(u_0) \).

Next, we define \(m_g(u_0, Z, \sigma) = E[g_\tau(b_{it,1}(u_0), \sigma)|u_0, Z_{it}], m_g^*(u_0, Z_{it}, \sigma) = E[g_\tau(b_{it,2}(u_0), \sigma)|u_0, Z_{it}], m_g'(u_0, Z_{it}, \sigma) = E[g_\tau^2(b_{it,2}(u_0), \sigma)|u_0, Z_{it}, Z_{it,2}], m_g(u_0, Z, \sigma) = E[g_\tau(b_{it,2}(u_0), \sigma)|u_0, Z_{it,2}, Z_{it}], m_g^*(u_0, Z_{it,2}, \sigma) = E[g_\tau^2(b_{it,2}(u_0), \sigma)|u_0, Z_{it,2}], m_g'(u_0, Z_{it,2}, \sigma) = E[g_\tau(b_{it,2}(u_0), \sigma)|u_0, Z_{it,2}], m_g(u_0, Z, \sigma) = E[g_\tau(b_{it,2}(u_0), \sigma)|u_0, Z_{it,2}], m_g^*(u_0, Z_{it,2}, \sigma) = E[g_\tau^2(b_{it,2}(u_0), \sigma)|u_0, Z_{it,2}], m_g'(u_0, Z_{it,2}, \sigma) = E[g_\tau(b_{it,2}(u_0), \sigma)|u_0, Z_{it,2}], \) respectively.

Moreover, we define several conditional variance-covariance matrices which will be used in the rest of the appendices. Firstly, let

\[
\Omega_{\tau-z}(u_0, \sigma) = \tau^2 \Omega_z(u_0) - 2\tau \Omega_{zg}(u_0, \sigma) + \Omega_{zg2}(u_0, \sigma)
\]

with \(\Omega_z(u_0) = E(Z_{it}Z'_{it}|u_0) \), \(\Omega_{zg}(u_0, \sigma) = E(Z_{it}Z'_{it}m_g(u_0, Z_{it}, \sigma)|u_0) \) and \(\Omega_{zg2}(u_0, \sigma) = E(Z_{it}Z'_{it}m_g^2(u_0, Z_{it}, \sigma)|u_0) \). Secondly, let

\[
\Omega_{\tau-zt}(u_0, \sigma) = \tau^2 \Omega_{zt}(u_0) - 2\tau \Omega_{ztg}(u_0, \sigma) + \Omega_{ztg1}(u_0, \sigma)
\]

with \(\Omega_{zt}(u_0) = E(Z_{it}Z'_{it}|u_0) \), \(\Omega_{ztg}(u_0, \sigma) = E(Z_{it}Z'_{it}m_g(u_0, Z_{it}, \sigma)|u_0) \) and \(\Omega_{ztg1}(u_0, \sigma) = E(Z_{it}Z'_{it}m_g(u_0, Z_{it}, \sigma)|u_0) \). Thirdly, let

\[
\Omega_{ztg}(u_0, \sigma) = E[Z_{it}Z'_{it}m_g^2(u_0, Z_{it}, \sigma)|u_0],
\]

\[
\Omega_{ztg2}(u_0, \sigma) = \tau^2 \Omega_{ztg}(u_0, \sigma) - 2\tau \Omega_{ztg2}(u_0, \sigma) + \Omega_{ztg2}(u_0, \sigma)
\]

with \(\Omega_{zt}(u_0) = E(Z_{it}Z'_{it}, \sigma)|u_0, \sigma) = E(Z_{it}Z'_{it}m_g^2(u_0, Z_{it}, \sigma)|u_0) \) and \(\Omega_{ztg2}(u_0, \sigma) = E(Z_{it}Z'_{it}m_g^2(u_0, Z_{it}, \sigma)|u_0) \). Fourthly, let

\[
\Omega_{zt2t2}(u_0, \sigma) = \tau^2 \Omega_{zt2t2}(u_0, \sigma) - 2\tau \Omega_{zt2t2}(u_0, \sigma) + \Omega_{zt2t2}(u_0, \sigma)
\]

with \(\Omega_{zt2t2}(u_0, \sigma) = E(Z_{it}Z'_{it}|u_0, Z_{it}, \sigma) = E(Z_{it}Z'_{it}m_g^2(u_0, Z_{it}, \sigma)|u_0) \) and \(\Omega_{zt2t2}(u_0, \sigma) = E(Z_{it}Z'_{it}m_g^2(u_0, Z_{it}, \sigma)|u_0) \). Finally, we define

\[
\Omega_{ztg2}(u_0, \sigma) = E[Z_{it}Z'_{it}m_g^2(u_0, Z_{it}, \sigma)|u_0].
\]

\[^{12}\frac{\partial \ln(\lambda_\tau(a, \sigma))}{\partial a} = e^{\frac{a}{\sigma}} + \Phi\left(-\frac{a}{\sigma} + (\tau - 1)\sigma\right) / [\Phi\left(\frac{\sigma}{\sigma} - \tau\sigma\right) + e^{\frac{1-2\tau^2+\sigma^2}{2}} \Phi\left(-\frac{a}{\sigma} + (\tau - 1)\sigma\right)]\]
Thus, the asymptotic bias and variance of \(\hat{\gamma}_\tau \) are respectively given by

\[
B_{\gamma,\tau}(\sigma) = \frac{\mu_2 h_1^2}{2} e_1' E[\Omega_{zg}^{-1}(U_i, \sigma) \Theta_r(U_i, \sigma)]
\]

with \(\Theta_r(U_i, \sigma) = E\{m_\gamma(U_i, Z_{it}, \sigma) Z_{it}[Z_{it,2}' \theta_r(U_i)]^2 | U_i \} \), and

\[
\Sigma_{\gamma,\tau}(\sigma) = e_1' E\{\Omega_{zg}^{-1}(U_i, \sigma) \left[\frac{1}{T} \Omega_{zg}(U_i, \sigma) + \sum_{t=2}^T \frac{2(T-t+1)}{T^2} \Omega_{zt,1}(U_i, \sigma) \Omega_{zg}^{-1}(U_i, \sigma) \right] \} e_1.
\]

Similarly, the asymptotic bias and variance of \(\hat{\beta}_r(u_0) \) are given by

\[
B_{\beta,\tau}(u_0, \sigma) \equiv B_{\beta,\tau}(u_0) = \frac{\mu_2 h_2^2}{2} \beta_r(u_0),
\]

and

\[
\Sigma_{\beta,\tau}(u_0, \sigma) = \frac{\nu_0 e_1'}{f_U(u_0)} \Omega_{zg}^{-1}(u_0, \sigma) \left[\frac{1}{T} \Omega_{zg}(u_0, \sigma) + \sum_{t=2}^T \frac{2(T-t+1)}{T^2} \Omega_{zt,2}(u_0, \sigma) \Omega_{zg}^{-1}(u_0, \sigma) \right] e_2.
\]

Since \(g(a, \sigma) = I_{a<0} \) when \(\sigma = 0 \), then \(m_g(u_0, Z_{it}, \sigma), m_g^*(u_0, Z_{it,2}, \sigma), m_g^2(u_0, Z_{it}, \sigma), m_g^*(u_0, Z_{it,2}, \sigma), m_{g_1}(u_0, Z_{it}, \sigma), m_{g_1}(u_0, Z_{it,2}, \sigma) \) are all equal to the quantile level \(\tau \), and furthermore, note that \(m_\beta(u_0, Z_{it}, \sigma), m_\beta(u_0, Z_{it,2}, \sigma) \) and \(m_\beta(u_0, Z_{it}, \sigma) \) are equal to \(f_{Y|U, Z}(Z_{it,1}' \gamma_r + Z_{it,2}' \theta_r(u_0)) \), \(f_{Y|U, Z}(Z_{it,1}' \gamma_r + Z_{it,2}' \theta_r(u_0)) \) and \(f_{Y|U, Z}(Z_{it,1}' \gamma_r + Z_{it,2}' \theta_r(u_0)) \), respectively. As a result, we can have \(\Omega_{zt,1}(u_0, \sigma) = \tau(1-\tau) \Omega_{zt,1}(u_0, \sigma) = \tau(1-\tau) \Omega_{zt,2}(u_0, \sigma) = \tau(1-\tau) \Omega_{zt,2}(u_0, \sigma) = \tau(1-\tau) \Omega_{zt,2}(u_0, \sigma) \).

Therefore, the formula of asymptotic bias \(B_{\gamma,\tau}(\sigma) \) reduces to

\[
B_{\gamma,\tau} = \frac{\mu_2 h_1^2}{2} e_1' E[\Omega_{zg}^{-1}(U_i) \Theta_r(U_i)]
\]

with \(\Theta_r(U_i) = E\{Z_{it}[Z_{it,2}' \theta_r(U_i)]^2 f_{Y|U, Z}(Z_{it,1}' \gamma_r + Z_{it,2}' \theta_r(U_i)) | U_i \} \). Similarly, the asymptotic variances \(\Sigma_{\gamma,\tau}(\sigma) \) and \(\Sigma_{\beta,\tau}(u_0, \sigma) \) can be respectively simplified to

\[
\Sigma_{\gamma,\tau} = \tau(1-\tau) e_1' E[\Omega_{zg}^{-1}(U_i) \left[\frac{1}{T} \Omega_{zg}(U_i) + \sum_{t=2}^T \frac{2(T-t+1)}{T^2} \Omega_{zt,1}(U_i) \Omega_{zg}^{-1}(U_i) \right] e_1.
\]

and

\[
\Sigma_{\beta,\tau}(u_0) = \frac{\tau(1-\tau) \nu_0 e_1'}{f_U(u_0)} \Omega_{zg}^{-1}(u_0) \left[\frac{1}{T} \Omega_{zg}(u_0) + \sum_{t=2}^T \frac{2(T-t+1)}{T^2} \Omega_{zt,2}(u_0) \Omega_{zg}^{-1}(u_0) \right] e_2.
\]
Appendix C: Proof of Theorem 1

In order to establish the asymptotic theory of \(\hat{\gamma}_r \) in Theorem 1, the local Bahadur representation for the estimators obtained from the first stage should be derived. At first, we introduce the following additional notations and definitions: \(H = \text{diag}(1_{K^*}, h_1 K_2^*)_{(K^* + K_2^*) \times (K^* + K_2^*)} \) and \(G = \left(\begin{array}{c} I_{K^*} \\ 0_{K_2^* \times K_2^*}, U_{ih_1}, I_{K_2^*} \end{array} \right)_{(K^* + K_2^*) \times K^*} \), where \(U_{ih_1} = (U_i - u_0)/h_1 \). Following Cai and Xu (2008) and Cai and Xiao (2012), we have

\[
\sqrt{Nh_1} H \left(\begin{array}{c} \hat{\gamma}_r(u_0) - \gamma_r(u_0) \\ \hat{\theta}_{0,r}(u_0) - \theta_{r}(u_0) \\ \hat{\theta}_{1,r}(u_0) - \theta_{r}(u_0) \end{array} \right) = \frac{\hat{\Omega}^{-1}(u_0, \sigma)}{\sqrt{Nh_1 T f_U(u_0)}} \sum_{j=1}^{N} \sum_{t=1}^{T} GZ_j \psi_r(a_{jt,1}, \sigma) K(U_{jih_1}) + o_p(1),
\]

where \(\hat{\Omega}(u_0, \sigma) = \text{diag}(\Omega_{z\theta}(u_0, \sigma), \mu_2 e_0' \Omega_{z\theta}(u_0, \sigma) e_0, e_0' = (0_{K_2^* \times K_2^*}, I_{K_2^*}) \), and \(\psi_r(a, \sigma) = \tau - g_r(a, \sigma) \). In particular, we can obtain

\[
\sqrt{Nh_1} \left(\begin{array}{c} \hat{\gamma}_r(u_0) - \gamma_r(u_0) \\ \hat{\theta}_{0,r}(u_0) - \theta_{r}(u_0) \end{array} \right) = \frac{\Omega_{z\theta}^{-1}(u_0, \sigma)}{\sqrt{Nh_1^2 T f_U(u_0)}} \sum_{j=1}^{N} \sum_{t=1}^{T} Z_j \psi_r(a_{jt,1}, \sigma) K(U_{jih_1}) + o_p(1),
\]

(24)

which is useful for establishing the asymptotic results for our estimators.

For any \(u_0 \), \(\frac{\Omega_{z\theta}^{-1}(u_0, \sigma)}{f_U(u_0)} Z_j \psi_r(a_{jt,1}, \sigma) K(U_{jih_1}) \) can be rewritten as

\[
h_1 B^{-1}(u_0, \sigma) \{ Z(u_0, Z_{jt}, \sigma) + Z_j \psi_r(a_{jt,1}, \sigma) - \psi_r(b_{jt,1}(u_0), \sigma) \} K_h(U_j - u_0) \}
\]

where \(B(u_0, \sigma) = f_U(u_0) \Omega_{z\theta}(u_0, \sigma), Z(u_0, Z_{jt}, \sigma) = Z_j \psi_r(b_{jt,1}(u_0), \sigma) K_h(U_j - u_0) \) and \(b_{jt,1}(u_0) = Y_{jt} - Z_{jt,1} \gamma_r - Z_{jt,2} \theta_r(u_0) \) for the \(j \)-th individual with the value of smoothing variable \(U_j \) in a small neighborhood of \(u_0 \). In particular,

\[
\hat{\gamma}_r(u_0) - \gamma_r(u_0) \simeq \frac{1}{NT} \sum_{j=1}^{N} \sum_{t=1}^{T} e_1' B^{-1}(u_0, \sigma) Z(u_0, Z_{jt}, \sigma)
\]

\[
+ \frac{1}{NT} \sum_{j=1}^{N} \sum_{t=1}^{T} e_1' B^{-1}(u_0, \sigma) Z_j \psi_r(a_{jt,1}, \sigma) - \psi_r(b_{jt,1}(u_0), \sigma) \} K_h(U_j - u_0)
\]

\[
\equiv \frac{1}{NT} \sum_{j=1}^{N} \sum_{t=1}^{T} e_1' B^{-1}(u_0, \sigma) Z(u_0, Z_{jt}, \sigma) + B_N(u_0, \sigma)
\]

holds uniformly for all \(u_0 \) under Assumption A1-A4. Thus,

\[
\hat{\gamma}_r - \gamma_r = \frac{1}{N} \sum_{i=1}^{N} [\hat{\gamma}_r(U_i) - \gamma_r(U_i)]
\]

29
Lemma 1. Under the assumptions in Theorem 1, we have

\[
\begin{align*}
&= \frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{1}{T} \sum_{t=1}^{T} e'_1 B^{-1}(U_i, \sigma) Z(U_i, Z_{jt}, \sigma) + \frac{1}{N} \sum_{i=1}^{N} B_N(U_i, \sigma) \\
&= \frac{2}{N^2} \sum_{1 \leq i < j \leq N} e'_1 B^{-1}(U_i, \sigma) \frac{1}{T} \sum_{t=1}^{T} Z(U_i, Z_{jt}, \sigma) + \frac{1}{N} \sum_{i=1}^{N} B_N(U_i, \sigma) \\
&= \frac{1}{N^2} \sum_{1 \leq i < j \leq N} [e'_1 B^{-1}(U_i, \sigma) \frac{1}{T} \sum_{t=1}^{T} Z(U_i, Z_{jt}, \sigma) + e'_1 B^{-1}(U_j, \sigma) \frac{1}{T} \sum_{t=1}^{T} Z(U_j, Z_{it}, \sigma)] \\
&\quad + \frac{1}{N} \sum_{i=1}^{N} B_N(U_i, \sigma) \\
&= \frac{N-1}{2N} \mathbb{U}_N + \mathbb{B}_N,
\end{align*}
\]

where \(\mathbb{B}_N = \frac{1}{N} \sum_{i=1}^{N} B_N(U_i, \sigma) \) and \(\mathbb{U}_N = \frac{2}{N(N-1)} \sum_{1 \leq i < j \leq N} p_N(\xi_i, \xi_j, \sigma) \) with

\[
p_N(\xi_i, \xi_j, \sigma) = e'_1 B^{-1}(U_i, \sigma) \frac{1}{T} \sum_{t=1}^{T} Z(U_i, Z_{jt}, \sigma) + e'_1 B^{-1}(U_j, \sigma) \frac{1}{T} \sum_{t=1}^{T} Z(U_j, Z_{it}, \sigma),
\]

and \(\xi_i = (U_i, Z_i) \) indicates all the information for \(i \). Define \(r_N(\xi_i, \sigma) = E[p_N(\xi_i, \xi_j, \sigma)|\xi_i] \), \(\theta_N(\sigma) = E[r_N(\xi_i, \sigma)] = E[p_N(\xi_i, \xi_j, \sigma)] \), and \(\hat{\mathbb{U}}_N = \theta_N(\sigma) + \frac{2}{N} \sum_{i=1}^{N} [r_N(\xi_i, \sigma) - \theta_N(\sigma)] \). The following two lemmas are useful to prove Theorem 1 and their detailed proofs are relegated to Appendix E.

Lemma 1. Under the assumptions in Theorem 1, we have

\[
(i) \quad r_N(\xi_i, \sigma) = e'_1 \Omega_{2g}^{-1}(U_i, \sigma) \{ \frac{1}{T} \sum_{t=1}^{T} Z_{it} \psi_t(b_{it,1}(U_i), \sigma)(1 + o(1)) \},
\]

\[
(ii) \quad \theta_N(\sigma) = \mu_2 h_1^2 e'_1 E[\Omega_{2g}^{-1}(U_i, \sigma) \Theta_\tau(U_i, \sigma)] + o(h_1^2),
\]

\[
(iii) \quad \text{Var}[r_N(\xi_i, \sigma)] = \Sigma_{\tau,\tau}(\sigma) + o(h_1).
\]

Lemma 2. Under the assumptions in Theorem 1, we have

\[
\mathbb{B}_N = o(h_1^2).
\]

Proof of Theorem 1: First, note that \(E[||p_N(\xi_i, \xi_j, \sigma)||^2] = O(h^{-1}) = O[N(Nh_1)^{-1}] \rightarrow o(N) \) if and only if \(Nh_1 \rightarrow \infty \) as \(h_1 \rightarrow 0 \). Lemma 3.1 in Powell, Stock and Stoker (1989) gives that \(\sqrt{N(\mathbb{U}_N - \hat{\mathbb{U}}_N)} = o_p(1) \). Then the result follows from Lemma 1, Lemma 2 and the Lindeberg-Lévy central limit theorem.
Appendix D: Proof of Theorem 2

The asymptotic distribution of $\hat{\theta}(u_0)$ can be easily extracted from the asymptotic distribution of $\hat{\theta}_{0,\tau}(u_0)$ because of $\hat{\theta}(u_0) = \mu_2^\tau(\hat{\theta}_{0,\tau}(u_0))$. Similar to the proof of Theorem 1, the local Bahadur representation for the estimators obtained from the third stage should be derived at first. We introduce the following additional notations and definitions: $H_2 = \text{diag}(1_{K_2^0}, h_21_{K_2^0}2K_2^0 \times 2K_2^0)$ and $G_2 = \left(\begin{array}{c} I_{K_2^0} \\ U_{ih_21_{K_2^0}} \end{array} \right)_{2K_2^0 \times K_2^0}$, where $U_{ih_2} = (U_i - u_0)/h_2$. For a given \sqrt{N} consistent estimator $\hat{\gamma}_\tau$ of γ_τ, we can obtain that

$$
\sqrt{Nh_2}H_2 \left(\hat{\theta}_{0,\tau}(u_0) - \theta_\tau(u_0) \right) = \frac{\Omega^{-1}(u_0, \sigma)}{\sqrt{Nh_2Tf_U(u_0)}} \sum_{t=1}^NG_2Z_{it,2}\psi_\tau(a_{it,2}, \sigma)K(U_{ih_2}) + o_p(1),
$$

where $\Omega(u_0, \sigma) = \text{diag}(\Omega_{z_{g2}}^\tau(u_0, \sigma), \mu_2\Omega_{z_{g2}}^\tau(u_0, \sigma))$. Similar to (24), we have

$$
\sqrt{Nh_2}(\hat{\theta}_{0,\tau}(u_0) - \theta_\tau(u_0)) = \frac{\Omega^{-1}(u_0, \sigma)}{\sqrt{Nh_2Tf_U(u_0)}} \sum_{t=1}^NZ_{it,2}\psi_\tau(a_{it,2}, \sigma)K(U_{ih_2}) + o_p(1),
$$

which is useful to establish the asymptotic result for $\hat{\theta}_{0,\tau}(u_0)$. The above equation can be rewritten as

$$
\sqrt{Nh_2}(\theta_{0,\tau} - \theta_\tau(u_0)) \approx \frac{\Omega^{-1}_{z_{g2}}(u_0, \sigma)}{\sqrt{Nh_2Tf_U(u_0)}} \sum_{t=1}^NZ_{it,2}\psi_\tau(a_{it,2}, \sigma)K(U_{ih_2})
$$

$$
= \frac{\Omega^{-1}_{z_{g2}}(u_0, \sigma)}{\sqrt{Nh_2Tf_U(u_0)}} \sum_{t=1}^NZ_{it,2}[\psi_\tau(a_{it,2}, \sigma) - \psi_\tau(b_{it,2}(U_i), \sigma)]K(U_{ih_2})
$$

$$
+ \frac{\Omega^{-1}_{z_{g2}}(u_0, \sigma)}{\sqrt{Nh_2Tf_U(u_0)}} \sum_{t=1}^NZ_2(u_0, Z_{it,2}, \sigma)
$$

$$
\equiv B_N + \Psi_N,
$$

where $b_{it,2}(U_i) = Y_{it}^* - Z_{it,2}\theta_\tau(U_i)$ and $Z_2(u_0, Z_{it,2}, \sigma) = Z_{it,2}\psi_\tau(b_{it,2}(U_i), \sigma)K(U_{ih_2})$. We will show that the first term B_N determines the asymptotic bias and the second term Ψ_N gives the asymptotic normality.

First, note that the first-order conditional moment of $\psi_\tau(b_{it,2}(U_i), \sigma)$ is

$$
E(\psi_\tau(b_{it,2}(U_i), \sigma)|U_i, Z_{it,2}) = E(\tau - g(b_{it,2}(U_i), \sigma)|U_i, Z_{it,2})
$$

$$
= \tau - E[g(b_{it,2}(U_i), \sigma)|U_i, Z_{it,2}]
$$

$$
\equiv \tau - m_g^*(U_i, Z_{it,2}, \sigma).
$$
Thus, the second-order conditional moments are
\[
E(\psi^2_t(b_{it,2}(U_i), \sigma)|U_i, Z_{it,2}) = E[\tau^2 - 2\tau g(b_{it,2}(U_i), \sigma) + g^2(b_{it,2}(U_i), \sigma)|U_i, Z_{it,2}]
\]
\[
= \tau^2 - 2\tau E[g(b_{it,2}(U_i), \sigma)|U_i, Z_{it,2}] + E[g^2(b_{it,2}(U_i), \sigma)|U_i, Z_{it,2}]
\]
\[
= \tau^2 - 2\tau m^*_g(U_i, Z_{it,2}, \sigma) + m^*_g(U_i, Z_{it,2}, \sigma),
\]
and
\[
E(\psi_t(b_{it,2}(U_i), \sigma)\psi_t(b_{it,2}(U_i), \sigma)|U_i, Z_{it,2})
\]
\[
= E[\tau^2 - \tau g(b_{it,2}(U_i), \sigma) - \tau g(b_{it,2}(U_i), \sigma) + g(b_{it,2}(U_i), \sigma)g(b_{it,2}(U_i), \sigma)|U_i, Z_{it,2}, Z_{it,2}]
\]
\[
= \tau^2 - \tau E[g(b_{it,2}(U_i), \sigma)|U_i, Z_{it,2}] - \tau E[|g(b_{it,2}(U_i), \sigma)|U_i, Z_{it,2}]
\]
\[
+ E[g(b_{it,2}(U_i), \sigma)g(b_{it,2}(U_i), \sigma)|U_i, Z_{it,2}, Z_{it,2}]
\]
\[
= \tau^2 - \tau m^*_g(U_i, Z_{it,2}, \sigma) - \tau m^*_g(U_i, Z_{it,2}, \sigma) + m^*_g(U_i, Z_{it,1,2}, Z_{it,2}, \sigma)
\]
\[
= \tau^2 - 2\tau m^*_g(U_i, Z_{it,2}, \sigma) + m^*_g(U_i, Z_{it,2}Z_{it,2}, \sigma).
\]
Thus,
\[
E(\Psi_N) = \frac{\Omega^{-1}_{zg}(u_0, \sigma)}{\sqrt{Nh_2 f_U(u_0)}} NE[Z_2(u_0, Z_{it,2}, \sigma)]
\]
\[
= \frac{\Omega^{-1}_{zg}(u_0, \sigma)}{\sqrt{Nh_2 f_U(u_0)}} NE\{E[Z_{it,2}\psi_t(b_{it,2}(U_i), \sigma)|U_i]K(U_{ih_2})\} = 0
\]
with \(E[Z_{it,2}\psi_t(b_{it,2}(U_i), \sigma)|U_i] = 0\), since we know that \(b_{it,2}(U_i)\) is the maximizer of the corresponding likelihood function, and
\[
Var(\Psi_N)
\]
\[
= \frac{\Omega^{-1}_{zg}(u_0, \sigma)}{h^2 T^2 f^2_U(u_0)} Var\{\sum_{t=1}^{T} Z_2(u_0, Z_{it,2}, \sigma)\} \Omega^{-1}_{zg}(u_0, \sigma)
\]
\[
= \frac{\Omega^{-1}_{zg}(u_0, \sigma)}{h^2 T^2 f^2_U(u_0)} \{TVar[Z_2(u_0, Z_{it,2}, \sigma)]
\]
\[
+ \sum_{t=2}^{T} 2(T-t+1)Cov(Z_2(u_0, Z_{it,2}, \sigma), Z_2(u_0, Z_{it,2}, \sigma))\} \Omega^{-1}_{zg}(u_0, \sigma)
\]
\[
= \frac{\nu_0}{T f_U(u_0)} \Omega^{-1}_{zg}(u_0, \sigma)[\Omega_{r,z2}(u_0, \sigma) + \sum_{t=2}^{T} \frac{2(T-t+1)}{T} \Omega_{r,z1,t,2}(u_0, \sigma)\Omega^{-1}_{zg}(u_0, \sigma)]
\]
since
\[
E[Z_{it,2}Z_{it,2}\psi_t^2(b_{it,2}(U_i), \sigma)K^2(U_{ih_2})]
\]
\[E\{Z_{it,2}Z_{it,2}'E[\psi^2_\tau(b_{it,2}(U_i), \sigma)|U_i, Z_{it,2}]K^2(U_{ih_2})\} \]
\[= E\{Z_{it,2}Z_{it,2}'[\tau^2 - 2\tau m^*_g(U_i, Z_{it,2}, \sigma) + m^*_g(U_i, Z_{it,2}, \sigma)]K^2(U_{ih_2})\} \]
\[= \nu_0 h_2 f_U(u_0)[\tau^2 \Omega_{z_2}(u_0) - 2\tau \Omega_{z_2g}(u_0, \sigma) + \Omega_{z_2g^2}(u_0, \sigma)](1 + o(1)) \]
\[\equiv \nu_0 h_2 f_U(u_0)\Omega_{z_2}(u_0, \sigma)(1 + o(1)), \]

and

\[E[Z_{it,2}'\psi_\tau(b_{it,2}(U_i), \sigma)\psi_\tau(b_{it,2}(U_i), \sigma)K^2(U_{ih_2})] \]
\[= E\{Z_{it,2}'E[\psi_\tau(b_{it,2}(U_i), \sigma)\psi_\tau(b_{it,2}(U_i), \sigma)|U_i, Z_{it,2}, Z_{it,2}]K^2(U_{ih_2})\} \]
\[= E\{Z_{it,2}'[\tau^2 - 2\tau m^*_g(U_i, Z_{it,2}, \sigma) + m^*_g(U_i, Z_{it,2}, \sigma)]K^2(U_{ih_2})\} \]
\[\equiv \nu_0 h_2 f_U(u_0)[\tau^2 \Omega_{z_2}(u_0) - 2\tau \Omega_{z_2g}(u_0, \sigma) + \Omega_{z_2g^2}(u_0, \sigma)](1 + o(1)) \]
\[\equiv \nu_0 h_2 f_U(u_0)\Omega_{z_2}(u_0, \sigma)(1 + o(1)). \]

Let \(Q_N = \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} Z_{it,2} \psi_\tau(b_{it,2}(U_i), \sigma)K(U_{ih_2}) \). Using the Cramer-Wold device, for any \(d \in R^{K^2} \), define \(Z_{N,it} = \sqrt{\frac{h_2}{N}} d'Z_{it,2} \psi_\tau(b_{it,2}(U_i), \sigma)K(U_{ih_2}) \), then we have

\[\sqrt{Nh_2}d'Q_N = \frac{1}{\sqrt{NT}} \sum_{i=1}^{N} \sum_{t=1}^{T} Z_{N,it} = \frac{1}{\sqrt{NT}} \sum_{i=1}^{N} Z^*_N, \]

where \(Z^*_N = \sum_{t=1}^{T} Z_{N,it} \), which is iid across \(i \). Hence, it follows by the Lindeberg-Lévy central limit theorem that the asymptotic normality holds.

Next, we move to work on the first term \(B_N \). Note that

\[b_{it,2}(U_i) - a_{it,2} = Z'_{it,2}\hat{\theta}_\tau(u_0) + Z'_{it,2}\hat{\theta}_\tau(u_0)\theta_{it,2}U_{ih_2} - Z'_{it,2}\theta_\tau(U_i) = -\frac{h^2}{2}Z'_{it,2}\hat{\theta}_\tau(u)U_{ih_2}^2, \]

then

\[g(b_{it,2}(U_i), \sigma) - g(a_{it,2}, \sigma) = \frac{h^2}{2}Z'_{it,2}\hat{\theta}_\tau(u)U_{ih_2}^2, \]

and

\[[g(b_{it,2}(U_i), \sigma) - g(a_{it,2}, \sigma))^2 \]
\[= 2[g(a_{it,2} + \zeta(b_{it,2}(U_i) - a_{it,2}), \sigma) - g(a_{it,2}, \sigma)]\frac{h^2}{2}Z'_{it,2}\hat{\theta}_\tau(u)U_{ih_2}^2, \]

and

\[\frac{h^2}{2}Z'_{it,2}\hat{\theta}_\tau(u)U_{ih_2}^2. \]
Thus,

\[E[\psi_r(a_{it,2}, \sigma) - \psi_r(b_{it,2}(U_i), \sigma)|U_i, Z_{it,2}] = -\frac{h^2}{2} E[\hat{g}(a_{it,2} - \frac{h^2}{2} Z_{it,2}^2 \hat{\theta}_r(U_{ih}) U_{ih}^2 |U_i, Z_{it,2}] = -\frac{h^2}{2} E[\hat{g}(b_{it,2}(U_i), \sigma)|U_i, Z_{it,2}] Z_{it,2}^2 \hat{\theta}_r(U_i) U_{ih}^2 (1 + o(1)) = -\frac{h^2}{2} m_\gamma(U_i, Z_{it,2}, \sigma) Z_{it,2}^2 \hat{\theta}_r(U_i) U_{ih}^2 (1 + o(1)) \]

and

\[E\{[\psi_r(a_{it,2}, \sigma) - \psi_r(b_{it,2}(U_i), \sigma)]^2|U_i, Z_{it,2}\} = O(h^4) \]

Let \(B_{it} = Z_{it,2}[\psi_r(a_{it,2}, \sigma) - \psi_r(b_{it,2}(U_i), \sigma)] K(U_{ih}) \), we have

\[E(B_{it}) = -\frac{h^2}{2} E[Z_{it,2} m_\gamma(U_i, Z_{it,2}, \sigma) Z_{it,2}^2 \hat{\theta}_r(U_i) U_{ih}^2 K(U_{ih})](1 + o(1)) = -\frac{h^2}{2} E[Z_{it,2} Z_{it,2}^2 \mu_2 \hat{\theta}_r(U_i) U_{ih}^2 K(U_{ih})](1 + o(1)) = -\frac{h^3}{2} f_U(u_0) \mu_2 \Omega_{zg}(u_0, \sigma) \hat{\theta}_r(u_0)(1 + o(1)) \]

and \(E[B_{it}^2] = o(h^2) \) and similarly, we have \(E[B_{it}, B_{it'}] = o(h^2) \). Finally, we show that

\[E(B_N) = \Omega_{zg}^{-1}(u_0, \sigma) \sqrt{N/h_2 f_U(u_0) N E\{Z_{it,2}[\psi_r(a_{it,2}, \sigma) - \psi_r(b_{it,2}(U_i), \sigma)] K(U_{ih})\} \]

\[= -\Omega_{zg}^{-1}(u_0, \sigma) \sqrt{N/h_2 f_U(u_0) N h^3/2 f_U(u_0) \mu_2 \Omega_{zg}(u_0, \sigma) \hat{\theta}_r(u_0)(1 + o(1)) \]

\[= \mu_2 h^3/2 \hat{\theta}_r(u_0)(1 + o(1)) \]

and \(Var(B_N) = o(h^2) \). This completes the proof of Theorem 2.
Appendix E: Proofs of Lemmas

Proof of Lemma 1: For any U_i, note that

$$E[\psi_r(b_{jt,1}(U_i), \sigma)|\xi_j] = \tau - E[g(b_{jt,1}(U_i), \sigma)|\xi_j]$$

$$\simeq \tau - E\{g(b_{jt,1}(U_j), \sigma) + \hat{g}(b_{jt,1}(U_j), \sigma)Z_{jt,2}[\theta_r(U_j) - \theta_r(U_i)]$$

$$+ \frac{1}{2}\hat{g}(b_{jt,1}(U_j), \sigma)\{Z_{jt,2}[\theta_r(U_j) - \theta_r(U_i)]\}^2|\xi_j\}$$

$$= \tau - m_g(U_j, Z_{jt, \sigma}) - m_{\hat{g}}(U_j, Z_{jt, \sigma})Z_{jt,2}[\theta_r(U_j) - \theta_r(U_i)]$$

$$- \frac{1}{2}m_g(U_j, Z_{jt, \sigma})\{Z_{jt,2}[\theta_r(U_j) - \theta_r(U_i)]\}^2$$

$$= \tau - m_g(U_j, Z_{jt, \sigma}) - m_{\hat{g}}(U_j, Z_{jt, \sigma})Z_{jt}'\left(\begin{array}{c} 0 \\ \theta_r(U_j) - \theta_r(U_i) \end{array}\right)$$

$$- \frac{1}{2}m_g(U_j, Z_{jt, \sigma})\{Z_{jt,2}[\theta_r(U_j) - \theta_r(U_i)]\}^2,$$

since $b_{jt,1}(U_i) - b_{jt,1}(U_j) = Z_{jt,2}[\theta_r(U_j) - \theta_r(U_i)]$. Hence, we have

$$E[Z(U_i, Z_{jt, \sigma})|\xi_i]$$

$$= E\{Z_{jt}\psi_r(b_{jt,1}(U_j), \sigma)K_h(U_j - U_i)|\xi_i\} + E\{Z_{jt}\hat{\psi}_r(b_{jt,1}(U_j), \sigma)b_{jt,1}(U_j) - b_{jt,1}(U_j)|K_h(U_j - U_i)|\xi_i\}$$

$$+ \frac{1}{2}E\{Z_{jt}\hat{\psi}_r(b_{jt,1}(U_j), \sigma)b_{jt,1}(U_j) - b_{jt,1}(U_j)|K_h(U_j - U_i)|\xi_i\} + o(h_1^2)$$

$$= -E\{m_{\hat{g}}(U_j, Z_{jt, \sigma})Z_{jt}Z_{jt}'\left(\begin{array}{c} 0 \\ \theta_r(U_j) - \theta_r(U_i) \end{array}\right)K_h(U_j - U_i)|\xi_i\}$$

$$- \frac{1}{2}E\{m_{\hat{g}}(U_j, Z_{jt, \sigma})Z_{jt}'\{Z_{jt,2}[\theta_r(U_j) - \theta_r(U_i)]\}^2K_h(U_j - U_i)|\xi_i\} + o(h_1^2)$$

$$\equiv -\Omega_1 - \frac{\Omega_2}{2} + o(h_1^2),$$

since $E\{Z_{jt}\psi_r(b_{jt,1}(U_j), \sigma)K_h(U_j - U_i)|\xi_i\} = E\{E[Z_{jt}\psi_r(b_{jt,1}(U_j), \sigma)|U_j]K_h(U_j - U_i)|\xi_i\} = 0$.

Then, we obtain that

$$\Omega_1 = E\{m_{\hat{g}}(U_j, Z_{jt, \sigma})Z_{jt}Z_{jt}'\left(\begin{array}{c} 0 \\ \theta_r(U_j) - \theta_r(U_i) \end{array}\right)K_h(U_j - U_i)|\xi_i\}$$

$$= E\{E[m_{\hat{g}}(U_j, Z_{jt, \sigma})Z_{jt}Z_{jt}'|U_j]\left(\begin{array}{c} 0 \\ \theta_r(U_j)(U_j - U_i) + \frac{1}{2}\theta_r(U_i)(U_j - U_i)^2 \end{array}\right)K_h(U_j - U_i)|\xi_i\} + o(h_1^2)$$

$$\equiv E[\Omega_{z\hat{g}}(U_j, \sigma)\left(\begin{array}{c} 0 \\ \theta_r(U_j)(U_j - U_i) + \frac{1}{2}\theta_r(U_i)(U_j - U_i)^2 \end{array}\right)K_h(U_j - U_i)|\xi_i] + o(h_1^2)$$

$$= \int[\Omega_{z\hat{g}}(U_i, \sigma) + uh_1\Omega_{z\hat{g}}(U_i, \sigma)]\left(\begin{array}{c} 0 \\ uh_1\theta_r(U_i) + \frac{(uh_1)^2}{2}\theta_r(U_i) \end{array}\right)K(u)[f_U(U_i) + uh_1\hat{f}_U(U_i)]du + o(h_1^2)$$
\[
= \mu_2 h_1^2 B(U_i, \sigma) \left(\frac{1}{2} \ddot{\theta}_r(U_i) + \frac{0}{f_{U_i}(U_i)} \dot{\theta}_r(U_i) \right) + \mu_2 h_1^2 f_{U_i}(U_i) \Omega_{2g}(U_i, \sigma) \left(\begin{array}{c} 0 \\ \dot{\theta}_r(U_i) \end{array} \right) + o(h_1^2)
\]

\[
= \mu_2 h_1^2 B(U_i, \sigma) \left(\frac{1}{2} \ddot{\theta}_r(U_i) + \frac{0}{f_{U_i}(U_i)} \dot{\theta}_r(U_i) \right) - \mu_2 h_1^2 f_{U_i}(U_i) \Theta(U_i, \sigma) + o(h_1^2),
\]

and

\[
I_2 = E\{m_{\hat{B}}(U_j, Z_{jt}, \sigma)Z_{jt}\{Z'_{jt,2}[\theta_r(U_j) - \theta_r(U_i)]\}^2 K_h(U_j - U_i)\xi_i\}
\]

\[
= E\{m_{\hat{B}}(U_j, Z_{jt}, \sigma)Z_{jt}\{Z'_{jt,2}\dot{\theta}_r(U_j)\}^2 (U_j - U_i)^2 K_h(U_j - U_i)\xi_i\} + o(h_1^2)
\]

\[
= E\{E\{m_{\hat{B}}(U_j, Z_{jt}, \sigma)Z_{jt}[Z'_{jt,2}\dot{\theta}_r(U_j)]^2(U_j - U_i)^2 K_h(U_j - U_i)\xi_i\} + o(h_1^2)
\]

\[
= E\{\Theta(U_j, \sigma)(U_j - U_i)^2 K_h(U_j - U_i)\xi_i\} + o(h_1^2)
\]

\[
= \mu_2 h_1^2 f_{U_i}(U_i) \Theta_r(U_i, \sigma) + o(h_1^2).
\]

It follows that

\[
\rho_N(\xi, \sigma) = E[\epsilon'_1 B^{-1}(U_i, \sigma) \frac{1}{T} \sum_{t=1}^{T} Z(U_i, Z_{jt}, \sigma) + \epsilon'_1 B^{-1}(U_j, \sigma) \frac{1}{T} \sum_{t=1}^{T} Z(U_i, Z_{jt}, \sigma) \xi_i]
\]

\[
= E[\epsilon'_1 B^{-1}(U_i, \sigma) \frac{1}{T} \sum_{t=1}^{T} Z(U_i, Z_{jt}, \sigma) \xi_i] + E[\epsilon'_1 B^{-1}(U_j, \sigma) \frac{1}{T} \sum_{t=1}^{T} Z(U_i, Z_{jt}, \sigma) \xi_i]
\]

\[
= o(h_1) + \frac{1}{T} \sum_{t=1}^{T} \epsilon'_1 \int B^{-1}(u, \sigma) Z_{jt} \psi_r(b_{it,1}(u), \sigma) K_h(U_i - u) f_{U_i}(u) du
\]

\[
= \frac{1}{T} \sum_{t=1}^{T} \epsilon'_1 B^{-1}(U_i, \sigma) Z_{jt} \psi_r(b_{it,1}(U_i), \sigma) f_{U_i}(U_i)(1 + o(1))
\]

\[
= \epsilon'_1 \Omega_{zg}^{-1}(U_i, \sigma) \left(\frac{1}{T} \sum_{t=1}^{T} Z_{jt} \psi_r(b_{it,1}(U_i), \sigma)(1 + o(1)) \right)
\]

and furthermore, we obtain that

\[
\theta_N(\sigma) = E[\rho_N(\xi, \xi, \sigma)] = 2E[\epsilon'_1 B^{-1}(U_i, \sigma) Z(U_i, Z_{jt}, \sigma)]
\]

\[
= -\mu_2 h_1^2 \{E[\epsilon'_1 \left(\ddot{\theta}_r(U_i) + \frac{0}{f_{U_i}(U_i)} \dot{\theta}_r(U_i) \right) - E[\epsilon'_1 \Omega_{zg}^{-1}(U_i, \sigma) \Theta_r(U_i, \sigma)] \} + o(h_1^2)
\]

\[
= \mu_2 h_1^2 \epsilon'_1 E[\Omega_{zg}^{-1}(U_i, \sigma) \Theta_r(U_i, \sigma)] + o(h_1^2).
\]

Similar to the derivation of \(Var(\Psi_N) \), it follows that

\[
Var[r_N(\xi_i)] = \epsilon'_1 E[\Omega_{zg}^{-1}(U_i, \sigma) \left(\frac{1}{T} \Omega_{r,z}(U_i, \sigma) \right)]
\]
Proof of Lemma 2: Similar to the proof of Theorem 2, we can show that

$$E(\mathbb{B}_N) = o(h_1^2).$$

The lemma is established due to the fact that $\text{Var}(\mathbb{B}_N) = O(\frac{1}{N} h_1^2)$.

Appendix F:

Derivation of (9)

$$\int_{-\infty}^{\infty} \exp[-\rho_\tau(a - v) - \frac{v^2}{2\sigma^2}] dv$$

$$= \int_{-\infty}^{a} \exp[-\tau(a - v) - \frac{v^2}{2\sigma^2}] dv + \int_{a}^{\infty} \exp[-(\tau - 1)(a - v) - \frac{v^2}{2\sigma^2}] dv$$

$$= \int_{-\infty}^{a} \{ e^{-\tau a + \frac{v^2}{2\sigma^2}} \Phi\left(\frac{a}{\sigma} - \tau \sigma\right) + e^{-(\tau - 1)a + \frac{(\tau - 1)^2\sigma^2}{2}} \Phi\left(\frac{a}{\sigma} - (\tau - 1)\sigma\right) \} dv$$

Derivation of (12)

$$\int_{-\infty}^{\infty} (\Phi\left(\frac{a}{\sigma} - \tau \sigma\right) - \Phi\left(\frac{a}{\sigma} - (\tau - 1)\sigma\right)) dv$$

$$= \int_{-\infty}^{0} e^{-\rho_\tau(a)} I_{a\geq0} \left[e^{\frac{-a^2}{2\sigma^2}} \Phi\left(\frac{a}{\sigma} - \tau \sigma\right) + e^{\frac{-(\tau - 1)^2\sigma^2}{2}} \Phi\left(\frac{a}{\sigma} - (\tau - 1)\sigma\right) \right] dv$$

$$+ \int_{-\infty}^{0} e^{-\rho_\tau(a)} I_{a>0} \left[e^{-\frac{a^2}{2\sigma^2}} \Phi\left(\frac{a}{\sigma} - \tau \sigma\right) + e^{\frac{-(\tau - 1)^2\sigma^2}{2}} \Phi\left(\frac{a}{\sigma} - (\tau - 1)\sigma\right) \right] dv$$

$$= e^{-\rho_\tau(a)} \lambda_{\tau}(\tau, a) (I_{a\geq0} + e^{-a} I_{a<0})$$
Differentiation max \(\sum_{i=1}^{N} \sum_{t=1}^{T} \ln(\lambda_r(a_{it}, \sigma)) \) with respect to \(\sigma \) leads to

\[
\sum_{i=1}^{N} \sum_{t=1}^{T} - \frac{\partial \lambda_r(a_{it}, \sigma)}{\partial \sigma} \bigg|_{\sigma = \tilde{\sigma}} = 0.
\]

By definition of \(\lambda_r(a, \sigma) = e^{r \sigma^2/2} \Phi \left(\frac{a - \tau \sigma}{\sigma} \right) + e^{-r \sigma^2/2} \Phi \left(-\frac{a}{\sigma} + (\tau - 1)\sigma \right) e^{a}, \)

\[
\frac{\partial \lambda_r(a, \sigma)}{\partial \sigma} = \tau^2 \sigma e^{r \sigma^2/2} \Phi \left(\frac{a - \tau \sigma}{\sigma} \right) + (\tau - 1)^2 \sigma e^{a} + \frac{(\tau - 1)^2 \sigma^2}{2} \Phi \left(-\frac{a}{\sigma} + (\tau - 1)\sigma \right) - r^2 \sigma^2 \lambda_r(a, \sigma).
\]

Thus,

\[
NT\tau^2 \tilde{\sigma} + \sum_{i=1}^{N} \sum_{t=1}^{T} -\phi \left(\frac{a_{it}}{\sigma} - \tau \tilde{\sigma} \right) + (1 - 2\tau)\tilde{\sigma}e^{a_{it}+\frac{(1-2\tau)\tilde{\sigma}^2}{2}} \Phi \left(-\frac{a_{it}}{\sigma} + (\tau - 1)\tilde{\sigma} \right) = 0.
\]

Derivation of (14)

Assume \(Y_{it} \) is generated based on Skorohod representation,

\[
Y_{it} = Z'_{it,1} \gamma(V_{it}) + Z'_{it,2} \theta(V_{it}, U_i) + v_i
\]

where \(V_{it} \) is distributed uniformly from 0 to 1 conditional on all the observarions. Then, \(Y_{it} - Z'_{it,1} \gamma_{0.5} - Z'_{it,2} \theta_{0.5}(U_i) = Z'_{it,1} [\gamma(V_{it}) - \gamma_{0.5}] + Z'_{it,2} [\theta(V_{it}, U_i) - \theta_{0.5}(U_i)] + v_i. \) Therefore, by delta method, we have

\[
Var \left(\frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} (Y_{it} - Z'_{it,1} \gamma_{0.5} - Z'_{it,2} \theta_{0.5}(U_i)) \right) = \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} \left(Z'_{it,1} Var \left(\gamma(V_{it}) - \gamma_{0.5} \right) + Z'_{it,2} \left(\theta(V_{it}, U_i) - \theta_{0.5}(U_i) \right) \right) + \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} v_i
\]

\[
\approx \frac{1}{N^2 T^2} \sum_{i=1}^{N} \sum_{t=1}^{T} \left(Z'_{it,1} \left(\frac{\partial \gamma_r(U_i)}{\partial \tau} \bigg|_{\tau=0.5} + Z'_{it,2} \frac{\partial \theta_r(U_i)}{\partial \tau} \bigg|_{\tau=0.5} \right)^2 Var \left(V_{it} \right) + \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} v_i
\]

References

