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Abstract

We study the role of limited commitment in a standard auction environment. In each
period, the seller commits to an auction with a reserve price, but she cannot commit
to future auctions or promise to stop auctioning an unsold object. The period length
captures the seller’s commitment ability. We characterize the set of perfect Bayesian
equilibrium profits attainable for the seller as her commitment power vanishes. With
more than one bidder, the optimal auction profit is not achievable. We show that, if the
number of buyers exceeds a distribution-specific cutoff, an efficient auction is the unique
limit of equilibrium outcomes, and in contrast to the durable goods monopoly, the Coase
conjecture holds without a stationarity restriction. For distributions with finite density,
three buyers are sufficient. If the number of bidders is below the distribution-specific
cutoff, profits above the efficient auction profit are achievable. We give conditions under
which the maximal profit can be attained through an initial auction with a reserve price,

followed by a continuously decreasing price path.
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Auctions with Limited Commitment

Qingmin Liu, Konrad Mierendorff, Xianwen Shi, Weijie Zhong

1 Introduction

Auction theory has found many applications ranging from private and public procurement,
to takeover bidding and electronic commerce. It is well understood that in standard auctions
such as first-price or second-price auctions, the seller can increase her profit by imposing a
minimal bid (or reserve price) which is strictly higher than her reservation value (Myerson,
1981; Riley and Samuelson, 1981).

A reserve price leads to inefficient exclusion of low-valued buyers which allows to extract
higher payments from high-valued buyers. If no bidder bids above the reserve price, the seller
has to commit to not auctioning the object again, even though there is common knowledge of
unrealized gains from trade with the excluded buyers. This aspect of full commitment seems
not entirely satisfactory in many applications. For example, in the sale of art, antiques, real
estate, and automobiles, aborted auctions are common, and unsold objects are frequently
re-auctioned or offered for sale later. As such, understanding the role of commitment in an
auction setting is of both theoretical and practical importance.

We revisit the classic auction model with one seller, a single indivisible object, and mul-
tiple buyers, whose values are drawn independently from a common distribution. Different
from the classic auction model, if the object is not sold on previous occasions, the seller can
auction it again with no predetermined deadline. More precisely, in each time period until
the object is sold, the seller posts a reserve price and holds an auction. For simplicity, we
restrict the exposition to second-price auctions, but our results do not change if the seller
can choose from a larger class of auctions in each period. Each buyer can either wait for the
next auction, or submit a bid no smaller than the reserve price. Waiting is costly and both
the buyers and the seller discount at the same rate. Within a period, the seller is committed
to the rules of the auction and the announced reserve price. The seller cannot, however,
commit to future reserve prices.

This framework is sufficiently rich to investigate the role of commitment. The seller’s com-

mitment power varies with the period length (or effectively with the discount factor). If the



period length is infinite, the seller has full commitment power. As the period length shrinks,
the seller’s commitment power also diminishes. We adopt the solution concept of perfect
Bayesian equilibrium, which is well-defined for the discrete-time game, and restrict attention
to buyer-symmetric equilibria. Within the framework, we analyze the continuous-time limit
at which the seller’s commitment power vanishes. Our modeling of limited commitment in
standard auctions resembles Milgrom (1987). He constructs a buyer-symmetric, stationary
equilibrium directly in continuous time, where the seller chooses a constant reserve price
equal to her reservation value. This leaves open many questions which are important to
understand the role of limited commitment. Are there non-stationary equilibria? What is
the set of equilibrium payoffs that is attainable by the seller? What is the equilibrium selling
strategy that attains the maximal payoff? Can the seller credibly use reserve prices above
her reservation value to increase her profit?

We obtain the following results. First, the full commitment profit cannot be achieved
under limited commitment. In order to attain the full commitment profit, the seller would
have to maintain a constant reserve price above her reservation value (Myerson, 1981). This
is not sequentially rational. Once the initial auction fails, the seller can deviate and end
the game with a positive profit by running an efficient auction—that is, by setting a reserve
price equal to her reservation value. Second, if the number of bidders exceeds a distribution
specific cutoff, an efficient auction maximizes the seller’s profit and implements the unique
limit of the equilibrium outcomes. For many widely used distributions, a rather modest
amount of competition between buyers is sufficient to induce the seller to give up screening
completely. For instance, if the type distribution has a finite density, then an efficient auction
is revenue-maximizing if there are more than two buyers. Third, if the number of bidders falls
short of the aforementioned cutoff, strictly positive reserve prices can arise in equilibrium
and the efficient auction is not optimal. Finally, under the assumption that the monopoly
profit function is concave, we obtain an ordinary differential equation that describes the
optimal limit outcome if the efficient auction is not optimal. We characterize the maximal
revenue and show that it can be attained through an initial auction with a strictly positive
reserve price followed by a sequence of continuously declining reserve prices.

A special case of our setup is the model of bilateral bargaining, in which an uninformed
seller makes price offers to a single privately informed buyer. This model is equivalent to a
durable goods monopoly with a continuum of buyers (see Gul, Sonnenschein, and Wilson,
1986, Section 6.2). In his seminal paper, Coase (1972) argues that a price-setting monopolist

completely loses her monopoly power and prices drop quickly to her marginal cost if she can



revise prices frequently. Game theoretic analysis has confirmed that stationary equilibria
satisfy the Coase conjecture (see Fudenberg, Levine, and Tirole, 1985; Gul, Sonnenschein,
and Wilson, 1986; Ausubel and Deneckere, 1989).! These are the only equilibria in the
“gap” case, where the seller’s reservation value is strictly below the lowest valuation of the
buyer. In the “no-gap” case, however, Ausubel and Deneckere (1989) (henceforth AD) show
that in addition to the stationary Coasian equilibria, there is a continuum of non-stationary
“reputational equilibria” which allow the seller to achieve profits arbitrarily close to the full
commitment profit.

Our model corresponds to the no-gap case, but our results stand sharp contrast to those
obtained in the bargaining model. First, AD reverse the Coase conjecture by proving a
“folk theorem” for the seller’s payoff. In particular, the full commitment profit is achievable.
Hence, limited commitment does not constrain the seller’s ability to extract profits in the
bargaining context. By contrast, in our auction setting, the full commitment profit is not
achievable. Instead, the lack of commitment power can restrict the seller’s ability to extract
profits to the extent that she cannot do better than using an efficient auction. Second, for
the bargaining setting, the Coase conjecture only holds for weak-Markov (i.e. stationary)
equilibria. By contrast, when there are sufficiently many buyers, we show that the Coase
conjecture holds for all symmetric equilibria, reverting the anti-Coasian result of AD.

On top of the differences in results compared to AD, we point out that our characteriza-
tion of the maximal profit and precise conditions for the optimality of the efficient auction
cannot be obtained by an extension of their techniques to our auction setting. AD can “shoot
for a known target” and their main challenge is to construct an equilibrium that attains the
full commitment profit. By contrast, the main challenge in our model is to formulate an opti-
mization problem and derive a candidate for the optimal profit and price path. We formulate
an auxiliary mechanism design problem with full commitment and add a dynamic constraint
that captures sequential rationality of the seller.? Characterizing the solution to this problem
constitutes the major part of the paper. Only after this, we construct reputational equilibria
using the uniform Coase conjecture, which follows ideas from AD.

The auxiliary problem is set up as a dynamic mechanism design problem with full com-

mitment. The crucial element in this problem is an extra constraint that captures limited

1See also Stokey (1981), Bulow (1982), Sobel and Takahashi (1983). Ausubel, Cramton, and Deneckere
(2002) survey the extensive literature on bilateral bargaining and the Coase conjecture.

2We cannot rely on the revelation principle because the seller has limited commitment. Bester and
Strausz (2001) develop a version of the revelation principle with limited commitment for environments with
one agent and a finite number of periods. It does not apply to our setting because our model has multiple
buyers (Bester and Strausz, 2000).



commitment. We introduce a dynamic “payoff floor” constraint as a necessary condition for
sequential rationality: at any point in time, the seller’s continuation payoff in the auxiliary
mechanism is bounded from below by the payoff from an efficient auction for the correspond-
ing posterior belief.> The value of this auxiliary problem provides an upper bound for the
equilibrium payoffs in the original game (in the continuous-time limit). We proceed to solve
the auxiliary problem and show that its value and its solution can be approximated by a
sequence of equilibrium outcomes of the original game. Therefore, the value of the auxiliary
problem is precisely the maximal attainable equilibrium payoff in our original problem, and
the solution to the auxiliary problem is precisely the limiting selling strategy that attains
this maximal payoff.*

Prior papers on the role of the commitment assumption in auctions restrict attention
to stationary equilibria and confirm the Coase conjecture. Milgrom (1987) sets the stage
by analyzing a continuous time sequential first-price auction and characterizes a stationary
Coasian equilibrium. McAfee and Vincent (1997) focus primarily on the gap case where only
stationary equilibria exist.” We focus on the no-gap case. A more complete understanding
of the commitment assumption in auctions requires an investigation beyond stationary equi-
libria. We characterize when there are indeed non-stationary equilibria with higher limiting
profits and when there is a unique equilibrium outcome as in the gap case. In the latter case,
we obtain the Coase conjecture even though the stationarity argument used in the gap case
does not apply.

As Milgrom (1987) and McAfee and Vincent (1997), we do not assume a definite last
period to which the seller can commit. The analysis and results in our model are qualita-
tively different from those of finite horizon models. For instance, in a finite horizon model,
backward induction argument applies and a patient seller can achieve the full commitment
profit because she has full commitment power in the last period. A general mechanism de-

sign framework with a finite horizon is developed by Skreta (2006, 2016) who shows that

3In the auxiliary problem, a mechanism specifies dynamic allocation rule that allows us to determine the
posterior and continuation profit at any point in time.

4The Coasian bargaining problem can also be analyzed using the auxiliary mechanism design approach.
Unlike in the case of multiple buyers, however, the payoff floor constraint does not restrict the seller in
this case. Without competition on the buyer side, the seller cannot ensure a positive profit. Therefore, the
characterization of the feasible set is straightforward and the seller can achieve the full commitment profit
in the continuous-time limit. Wolitzky (2010) uses this approach to analyze a Coasian bargaining model in
which the seller cannot commit to delivery. In his model, the full commitment profit is achievable even in
discrete time because there is always a no-trade equilibrium which yields zero profit.

SFor the “no-gap” case they explicitly construct stationary Coasian equilibria for the uniform distribution
but do not analyze other equilibria or general distributions.



the optimal mechanism is a sequence of standard auctions with reserve prices.® We restrict
attention to auction mechanisms in each period and different from hers, our objective is to
characterize the equilibrium payoffs as the commitment power vanishes.

An alternative approach to modeling limited commitment is to assume that the seller
cannot commit to trading rules even for the present period. McAdams and Schwarz (2007)
consider an extensive form game in which the seller can solicit multiple rounds of offers from
buyers. Their paper shows that if the cost of soliciting another round of offers is large, the
seller can credibly commit to a first-price auction, and if the cost is small, the equilibrium
outcome approximates that of an English auction. In Vartiainen (2013), a mechanism is a
pure communication device that permits the seller to receive messages from bidders. The
seller cannot commit to any action after receiving the messages, and there is no discounting.
Vartiainen shows that the only credible mechanism is an English auction. In contrast to
these papers, we posit that the seller cannot renege on the agreed terms of the trade in the
current period. For example, this might be enforced by the legal environment.

The paper is organized as follows. In the next section, we formally introduce the model.
Section 3 develops our main results heuristically for uniformly distributed valuations. Sec-
tion 4 states the formal results, discusses the intuition, and presents comparative statics in
the context of a parametric family of distributions. Section 5 presents our methodological
approach and outlines the main steps of the analysis. In Section 6 we discuss partial results
for the case asymmetric equilibria and comment on alternative modeling assumptions. Un-
less noted otherwise, proofs can be found in Appendix A. Omitted proofs can be found in

the Supplemental Material.

2 Model

We consider the standard auction environment where a seller (she) wants to sell an indivisible
object to n potential buyers (he). Buyer ¢ privately observes his own valuation for the object
v’ € [0,1]. We use (vi,v7%) € [0,1]" to denote the vector of the n buyers’ valuations, and
v € [0,1] to denote a generic buyer’s valuation. Each v’ is drawn independently from a
common distribution with full support, c.d.f. F (-), and a continuously differentiable density
f(+) such that f(v) > 0 for all v € (0,1). The highest order statistic of the n valuations
(v',v7") is denoted by v, its c.d.f. by F™ and the density by f(™. The seller’s reservation

6Horner and Samuelson (2011), Chen (2012), and Dilme and Li (2012) analyze the dynamics of posted
prices under limited commitment in a finite horizon model. They assume that the winner is selected randomly
when multiple buyers accept the posted price.



value for the object is constant over time and we normalize it to zero.”

Time is discrete and the period length is denoted by A. In each period t = 0, A, 2A, ...,
the seller runs a second-price auction (SPA) with a reserve price. To simplify notation, we
often do not explicitly specify the dependence of the game on A. The timing within period
t is as follows. First, the seller publicly announces a reserve price p; for the auction run in
period ¢, and invites all buyers to submit a valid bid, which is restricted to the interval [p;, 1].
After observing p;, all buyers decide simultaneously either to bid or to wait. If at least one
valid bid is submitted, the winner and the payment are determined according to the rules of
the second-price auction and the game ends. If no valid bid is submitted, the game proceeds
to the next period. Both the seller and the buyers are risk-neutral and have a common
discount rate » > 0. This implies a discount factor per period equal to § = e™™ < 1. If
buyer 7 wins in period ¢ and has to make a payment 7, then his payoff is e~ (v — "), and
the seller’s payoff is e "'rt.

We assume that the seller has limited commitment power. She can commit to the reserve
price that she announces for the current period: if a valid bid is placed, then the object is sold
according to the rules of the announced auction and she cannot renege. She cannot commit,
however, to future reserve prices: if the object was not sold in a period, the seller can always
run another auction with a new reserve price in the next period. She cannot promise to stop
auctioning an unsold object, or commit to a predetermined sequence of reserve prices.

We denote by hy = (po,pa, ..., pi—a) the public history at the beginning of ¢ > 0 if no
bidder has placed a valid bid up to ¢, and write hy = @) for the history at which the seller
chooses the first reserve price.® Let H; be the set of such histories. A (behavior) strategy for
the seller specifies a Borel-measurable function p; : H; — P[0, 1] for each t = 0, A, 2A, ...,
where P[0, 1] is the space of Borel probability measures endowed with the weak* topology.’
A (behavior) strategy for buyer i specifies a function b} : H, x [0,1] x [0,1] — P[0,1] for
each t = 0,A,2A, ..., where we assume that bi(h:, p;,v') is Borel-measurable in v*, for all
hy € Hy, and all p; € [0, 1], and that supp b:(hs, pi, v') C {0} U [py, 1], where “0” denotes no
bid or an invalid bid.

We consider perfect Bayesian equilibria (PBE), and we will focus on equilibria that are

"The reservation value can be interpreted as a production cost. Alternatively, if the seller has a constant
flow value of using the object, the opportunity cost is the net present value of the seller’s stream of flow
values. What is important here is that the seller’s reservation value is the same as the value of the lowest
possible buyer type. In Section 6, we discuss the case that the seller’s reservation value is in the interior of
the type distribution which introduces uncertainty about the number of potential buyers.

8We do not have to consider other histories because the game ends if someone places a valid bid.

9We slightly abuse notation by using p; both for the seller’s strategy and the announced reserve price at
a given history.



buyer symmetric.!? We will not distinguish between strategies that coincide with probability
one for all histories. In the rest of the paper, “equilibrium” is used to refer to this class of
symmetric perfect Bayesian equilibria.'’ Let £ (A) denote the set of equilibria of the game for
given A.1? Let TI* (p, b) denote seller’s expected revenue in any equilibrium (p,b) € £ (A).
We are interested in the entire set of profits that the seller can achieve in the limit when the

period length vanishes. The maximal profit in the limit is

IT* :=limsup sup I (p,b).
A0 (pb)e(A)

The minimal profit in the limit is

I, := hgl_i)glf (p,b%ggm) 12 (p,b) .

The analysis of the continuous-time limit allows us to formulate a tractable optimization
problem. We will justify our approach by providing approximations through discrete time
equilibria. An alternative approach is to set up the model directly in continuous time. This
approach, however, has unresolved conceptual issues regarding the definition of strategies
and equilibrium concepts in continuous-time games of perfect monitoring, which are beyond

the scope of this paper.'?

Remark 1 (Larger Class of Permissible Auction Formats). Our exposition and anal-
ysis are formulated in terms of second-price auctions. In Appendix F, we establish payoff
equivalence for our dynamic environment with limited commitment, and show that all of our
results hold for a larger class of symmetric bidding mechanisms in which only the winner
pays. This class includes not only standard first-price and second price auctions with reserve
prices, but also exotic mechanisms like third-price auctions and auctions where the winner’s
payment may depend on his own bid and his rivals’ bids. In these mechanisms, the object is
always allocated to the bidder with the highest valid bid. The main substantial restriction
is allocative efficiency. This rules out posted prices with a rationing rule (as for example in
Horner and Samuelson, 2011), lotteries, or raffles. Formally, we show that any equilibrium

allocation and equilibrium payoff in the game where the seller can choose a (potentially

10See Fudenberg and Tirole (1991) for the definition of PBE in finite games. The extension to infinite
games is straightforward.

HFor partial results about asymmetric equilibria, see Section 6 and Appendix E in the Supplemental
Material.

12We establish equilibrium existence in Proposition 1 (see Section 4).

13See Bergin and MacLeod (1993) and Fuchs and Skrzypacz (2010) for related discussions.



different) mechanism from this larger class of mechanisms in every period can be replicated
in the game where the seller is restricted to choose only second-price auctions with reserve

prices and vice versa.

Remark 2 (Interpretation of the Continuous Time Limit). We take A — 0 in comput-
ing the limiting payoff. This need not be interpreted literally as running auctions frequently
in real time. As in the dynamic games literature, this formulation is equivalent to taking
0 — 1 in a discrete-time problem. The continuous-time limit, however, is more convenient

when we consider limiting price paths.

Remark 3 (The Gap Case). In the terminology of Coasian bargaining literature, we
consider the “no-gap” case. The gap case, where F' has a support [¢, 1] for € > 0, has been
studied by McAfee and Vincent (1997) in which only weak-Markov equilibria exist. See

Section 4 for a comparison with our results.

Before we proceed, we present several assumptions on the distribution function F. Most
of our analysis only depends on a subset of the assumptions. We will note explicitly which

assumption is used for which result.'*
Assumption 1. J(v) :=v — (1 = F(v)) /f(v) is strictly increasing on [0, 1].

Assumption 1 is the standard monotone virtual value. This corresponds to assuming
decreasing marginal revenues (see Bulow and Roberts, 1989). The following two assumptions

are regularity conditions on the distribution in the neighborhood of 0.
Assumption 2. ¢ :=lim,_,o (f'(v)v) /f(v) exists and —1 < ¢ < 0.

Since ¢ = lim, o (f (v)v) /F (v) — 1, ¢ > —1 if the limit exists. Assumption 2 rules out
the knife-edge cases of = —1 and ¢ = co.'® Assumption 2 is satisfied, for example, if the
density function f is bounded away from 0 and has a bounded derivative. It is also satisfied
for a class of distributions which includes densities with f(0) = 0 or f (0) = oo such as the

power function distributions F (v) = v* with k > 0.

Assumption 3. There exist constants 0 < M <1 < L < oo and o > 0 such that Mv* <
F(v) < Lv* for all v € [0,1].

14 A1l four assumptions are independent. Details can be found in Appendix G in the Supplemental Material.

15An example for the knife-edge cases is the distribution function F(v) = v(/*)* defined on [0, 1]. For
this distribution function, ¢ = —1if k = —1/2, and ¢ = oo if kK = 1/2. We thank Yuliy Sannikov for providing
this example.



Assumption 3 is adopted from AD who use it to prove the uniform Coase conjecture. We

use it when we extend this result to the auction setting.
Assumption 4. The revenue function v(1 — F(v)) is concave on [0, 1].

Assumption 4 is equivalent to assuming that J(v)f(v) is increasing. It is also equivalent
to (f'(v)v)/f(v) > —2. Note that, under Assumption 2, ¢ = lim, o (f'(v)v) /f(v) > —1,
so v(1 — F(v)) is concave for v sufficiently close to 0. This will allow us to dispense with
Assumption 4 for all but one of our results.

Examples for distributions where all assumptions are satisfied simultaneously are the

power function distributions F (v) = v* with support [0, 1] and k > 0.

3 Examples

3.1 One Bidder

To provide a benchmark for our examples with multiple bidders, we review the case of one
bidder (n = 1). In this case, our setup reduces to the model of AD where the seller is
restricted to post prices. Selling efficiently requires a price equal to zero and yields a revenue
of IT¥ = 0. AD prove the existence of weak-Markov equilibria and show that these equilibria
satisfy the Coase conjecture—the seller achieves a profit of zero in the limit as A — 0.6
Hence II, = II¥ = 0. They also analyze non-Markov “reputational” equilibria. In these
equilibria, a deviation from the equilibrium path by the seller is deterred by the threat to
switch to low-profit weak-Markov equilibria. The equilibrium paths starts with an arbitrary
initial price that may decline at an arbitrarily slow rate as A becomes small. In the limit, the
price may be constant. Using this construction, AD show that II* is equal to the monopoly
profit with full commitment IT*—the highest feasible payoff for the seller. In other words,
the characterization of II* amounts to a construction of equilibria that approximate the full
commitment profit ITM.

In contrast, for our characterization of II* for n > 1, we construct a candidate for the
profit maximizing equilibrium outcome, which yields II* < IT™. This is the heart of our
analysis and will then allow us to construct equilibria to approximate the maximal profit
IT*. In the next section we outline how we use the implications of the seller’s sequential
rationality through an auxiliary mechanism design problem in continuous time, to obtain

such a candidate.

161n a weak-Markov equilibrium, the buyer’s strategy depends only on the current price. See also Fuden-
berg, Levine, and Tirole (1985) and Gul, Sonnenschein, and Wilson (1986).



3.2 Two Bidders

To illustrate our main results, we first assume that there are only two bidders (n = 2),
whose values are uniformly distributed on [0,1]. In this case, the seller’s expected revenue
from the efficient (second-price) auction is TT¥ = % ~ (.33, which is the expectation of the
lower of the two buyers’ values. We show II, = II¥, generalizing the one-bider case. The
seller’s reserve price in Myerson’s optimal auction with full commitment is %,17 and the
corresponding expected revenue is II" = 2 = 0.42.

1

To achieve the full-commitment profit, the low types (lower than 5) must trade with
an arbitrary small discounted probability to reduce the rents of the high types. With one
buyer, this can be done by delaying the trade of the low types for an arbitrarily long period
of time. As in AD, the low-profit Coasian equilibrium can be used to deter a deviation.
With two buyers, once the seller learns that all buyers have low valuations, she can run an
efficient auction rather than excluding the buyers. In contrast to the case of one buyer, this
guarantees a positive profit. Hence, without commitment and with two buyers, the seller
cannot obtain a revenue of ITM = % How much profit can the seller extract in this case?

To get an intuitive idea, let us use a heuristic construction in continuous-time and consider
the following “equilibrium.” At any ¢t > 0, on the equilibrium path, the seller posts a reserve
price p;. Buyers use a cutoff strategy—that is, a buyer bids before time t if and only if his
value v is weakly above some cutoff v;, so that v, is the highest type remaining at time t. We
can ignore continuations after deviations by a buyer because they either remain undetected
or lead to a successful sale which ends the game. If the seller deviates from the reserve price
path p;, the off-path play stipulates that the seller posts a constant reserve price p; = 0
and buyers place valid bids if and only if p; = 0. We consider an “equilibrium” in which
both p, and v, are continuously differentiable and decreasing over time.'® In addition, our
construction will ensure that at any ¢ > 0 the seller is just indifferent between following the

equilibrium strategy and a deviation.

The Buyers’ Incentives Consider a buyer whose valuation equals the cutoff type v,
at t > 0. This buyer must be indifferent between buying at p;, and waiting for a period of

length dt to accept a lower price p;i 4. The latter exposes him to the risk of losing, if his

1"The optimal reserve price is such that the virtual valuation v — 1}5}(;’) equals 0.

18The results in Section 4 do not rely on the differentiability assumption.

10



opponent has a valuation between v;, 4 and v;. Therefore, the indifference condition is

vy —pe = (1 —rdt) <vt;dt> (Ve — Prar) - (3.1)
The left-hand side of equation (3.1) is the marginal bidder’s profit from trading immediately
at t, conditional on being the bidder with the higher valuation. The right-hand side is the
option value from waiting: (1 —rdt) is the discounting, vtv;t‘” is the probability that the
opponent’s valuation is below vy, 4 conditional on the fact that her valuation is below v,
(this is the probability that v, wins the object at ¢ + dt), and v, — p;1q is the payoff the
marginal bidder gets from the delayed trade at ¢t 4+ dt. Using a first-order approximation, we

obtain the following differential equation governing p; and v;:

) v

b= (_t - 7’) (ve —pt) - (3:2)
Ut

The Seller’s Incentive As explained previously, we look for an equilibrium in which

the seller is indifferent between following the equilibrium path and deviating at any time

t > 0. This condition is given by,

/OO e " p, 21)52 (—0s) ds = lvt. (3.3)
t (ve) 3

The left-hand side is the expected present value of the seller’s equilibrium revenue at ¢ > 0:
Since vy is continuously differentiable, at each moment s > t, only the marginal buyer type
vs buys at the reserve price p;. The marginal type has a conditional density 2v,/ (vt)2, the
density of the higher value of two buyers, and it declines with the rate —v,. The right-hand
side is the seller’s revenue after a deviation: running an efficient second-price auction with

an expected revenue of I1%(v,) = fv;.

Combining the Seller’s and the Buyers’ Incentives Equations (3.2) and (3.3)

together give rise to a second-order differential equation in v;.*

Details of the derivations can be found in Appendix B.1 in the Supplemental Material.
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Boundary conditions are given by the initial cutoff vy ,® and the fact that the seller can-

not maintain a positive price forever, which implies lim; ., v; = 0. Using these boundary

conditions, we obtain the following solution for the cutoff path
v =vgie . (3.5)

Substituting v; in the indifference condition we obtain the corresponding price sequence

2
P = gva“e_”. (3.6)

Determining vy We have determined (p;, v;) up to the initial condition vy, which can

be chosen to maximize the seller’s expected profit

205 (1 — v ) po+ (1 — o)’ (vg il _3”3) + % (vg). (3.7)
The expected profit in the whole game consists of two parts. The first is the expected revenue
from the initial auction in which the reserve price is py = %va“ , and buyers with a type higher
than vd participate. The transaction price is py if exactly one buyer has a valuation above
vy, which occurs with probability 2vg (1 — vg); when both valuations are above v, which
1_3U"+—that is, the
expected value of the lower valuation conditional on both being above vj . The second part

occurs with probability (1 — vy )2, the average transaction price is vy +

is the seller’s revenue from the continuation after time ¢ = 0, which equals § (v )3 by (3.3).
The expected profit in (3.7) is maximized by v§ = 2, which implies py = 3.

The profit associated with the equilibrium just constructed can be computed by eval-
uating (3.7) for vy = % This yields % ~ 0.38. How does this figure compare with the
benchmarks achieved under full commitment and in an efficient auction? The profit is larger
than the average of II¥ ~ 0.33 and IIM ~ 0.42. Even though the full commitment profit
is not achievable, the constructed equilibrium shows that more than 50% of the maximal
profit increase relative to the efficient auction can be achieved. Put differently, commitment
accounts for less than 50% of the profit increase from running Myerson’s optimal auction in
an environment with two buyers and uniformly distributed valuations.

Two immediate questions arise from this example. First, is the “equilibrium” we have

constructed the limit of equilibria in the discrete time game as A — 07 For example, there

20Remember that vy = 1 is the highest type remaining at t = 0. At ¢ = 0, an interval of types participates
in the initial auction and we denote the marginal type at the lower bound by va' = limg o vs.
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are many ways of deviating from the equilibrium path, the construction above essentially
assumes that any deviation will result in the profit of an efficient auction. A zero-reserve
price at ¢ = 0 is neither an equilibrium in discrete-time nor a continuous time limit of
stationary equilibria.?’ Second, does the construction indeed yield the highest profit the
seller can achieve? The answers to both questions are affirmative. The construction in
the example is based on the main insight from our general analysis where we formulate an
auxiliary mechanism design problem and use a payoff floor constraint to capture the seller’s
incentives. As in the example, the payoff floor is given by the profit of an efficient auction.
This is justified by the uniform Coase conjecture which states that profits in stationary
equilibria converge to the profit of an efficient auction (see Proposition 1 below). We then
show that the payoff floor constraint has to be binding at the optimal solution for a broad
class of distributions including the uniform distribution. This confirms II* = g—} for two
buyers and the uniform distribution. To link the results obtained from the auxiliary problem
in continuous time to the original game, we provide an approximation by discrete time

equilibria.

3.3 Three or More Bidders

When there are three or more buyers, we can follow the same steps as before to obtain
a differential equation that combines the buyers’ indifference condition and the binding

incentive constraint for the seller. For general n we obtain

B (-2t 1)

ijt (TL — 1) (o

r=0. (3.8)

As before we can obtain solutions for any choice vy > 0. If n > 2, however, these solutions
yield cutoff and price paths which are strictly increasing. Hence, they cannot constitute an
equilibrium. This leaves open the following questions: Are there other ways of constructing
more complicated equilibria? After all, the equilibrium we constructed for the case of n = 2
is very specific: in particular, the seller’s incentive constraint is binding and the speed of
trade is time-invariant. Relaxing these constraints opens many new possibilities of equilibria.
An implication of our main analysis is that for the uniform distribution, it is impossible to
construct a non-trivial equilibrium if n > 2. The only possibility is that II* = II, = II¥. In
contrast to the case of two buyers, commitment is crucial for using positive reserve prices

to attain a profit higher than the efficient auction profit. Our general analysis shows that

21This was first recognized by McAfee and Vincent (1997), see footnote 22 below.
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positive reserve prices can only be sustained in equilibrium if the seller’s binding incentive
constraint yields a decreasing sequence of prices and cutoffs. This confirms that IT* = II¥ if

there are three or more buyers in the case of the uniform distribution.

4 Results

This section presents the results of the paper. Based on AD we start by showing existence of
weak-Markov equilibria—that is, equilibria with stationary buyer-strategies that only depend
on the valuation and the current reserve price. The second part of the following proposition

generalizes the uniform Coase conjecture for weak-Mar